大数定理及中心极限定理
大数定理
依概率收敛
设 \(Y_1\),\(Y_2\),\(\cdots\),\(Y_n\),\(\cdots\) 是一个随机变量序列,\(a\) 是一个常数,若对于任意正数 \(\varepsilon\),有
\[ \lim_{n \to \infty} P\{|Y_n - a| < \varepsilon\} = 1 \]
则称序列 \(Y_1\),\(Y_2\),\(\cdots\),\(Y_n\),\(\cdots\) 依概率收敛于 \(a\),记为
\[ Y_n \xrightarrow{P} a \]
设 \(X_n \xrightarrow{P} a\),\(Y_n \xrightarrow{P} b\),又设函数 \(g(x, y)\) 在点 \((a, b)\) 连续,则
\[ g(X_n, Y_n) \xrightarrow{P} g(a, b) \]
弱大数定理
设 \(X_1\),\(X_2\),\(\cdots\) 是相互独立,服从同一分布的随机变量序列,且具有数学期望 \(E(X_k) = \mu (k = 1, 2, \cdots)\),作前 \(n\) 个变量的算术平均 \(\frac{1}{n} \sum\limits_{k = 1}^{n} X_{k}\),则对于任意 \(\varepsilon > 0\),有
\[ \lim_{n \to \infty} P\bigg\{\bigg|\frac{1}{n} \sum_{k = 1}^{n} X_{k} - \mu\bigg| < \varepsilon\bigg\} = 1 \]
设随机变量 \(X_1\),\(X_2\),\(\cdots\),\(X_n\),\(\cdots\) 相互独立,服从同一分布且具有数学期望 \(E(X_k) = \mu(k = 1, 2, \cdots)\),则序列 \(\bar{X} = \frac{1}{n} \sum\limits_{k = 1}^{n} X_{k}\),依概率收敛于 \(\mu\),即 \(\bar{X} \xrightarrow{P} \mu\)。
伯努利大数定理
设 \(f_A\) 是 \(n\) 次独立重复试验中事件 \(A\) 发生的次数,\(p\) 是事件 \(A\) 在每次试验中发生的概率,则对于任意 \(\varepsilon > 0\),有
\[ \lim_{n \to \infty} P\bigg\{\bigg|\frac{f_A}{n} - p\bigg| < \varepsilon\bigg\} = 1 \]
中心极限定理
独立同分布的中心极限定理
设随机变量 \(X_1\),\(X_2\),\(\cdots\),\(X_n\),\(\cdots\) 相互独立,服从同一分布,且具有数学期望和方差:\(E(X_k) = \mu\),\(D(X_k) = \sigma^2 > 0(k = 1, 2, \cdots)\),则随机变量之和 \(\sum\limits_{k = 1}^{n} X_{k}\) 的标准化变量
\[ Y_n = \frac{\sum\limits_{k = 1}^{n} X_{k} - E\bigg(\sum\limits_{k = 1}^{n} X_{k}\bigg)}{\sqrt{D(\sum\limits_{k = 1}^{n} X_k)}} = \frac{\sum\limits_{k = 1}^{n} X_{k} - n\mu}{\sqrt{n}\delta} \]
的分布函数 \(F_n(x)\) 对于任意 \(x\) 满足
\[ \begin{aligned} \lim_{n \to \infty} F_n(x) &= \lim_{n \to \infty} P\bigg\{\frac{\sum\limits_{k = 1}^{n} X_{k} - n\mu}{\sqrt{n}\delta} \leq x\bigg\} \\ &= \int_{-\infty}^{x} \frac{1}{\sqrt{2}\pi} \text{e}^{-t^2/2} \text{d}t = \Phi(x) \end{aligned} \]
李雅普诺夫定理
设随机变量 \(X_1\),\(X_2\),\(\cdots\),\(X_n\),\(\cdots\) 相互独立,它们具有数学期望和方差
\[ E(X_k) = \mu_{k}, \quad D(X_{k}) = \sigma^{2}_{k} > 0, \quad k = 1, 2, \cdots \]
记 \(B_n^2 = \sum\limits_{k = 1}^{n} \sigma_{k}^2\),若存在正数 \(\delta\),使得当 \(n \to \infty\) 时,
\[ \frac{1}{B_{n}^{2 + \delta}} \sum_{k = 1}^{n} E\{|X_k - \mu_k|^{2 + \delta}\} \to 0 \]
则随机变量之和 \(\sum\limits_{k = 1}^{n} X_{k}\) 的标准化变量
\[ Z_n = \frac{\sum\limits_{k = 1}^{n} X_{k} - E\bigg(\sum\limits_{k = 1}^{n} X_{k}\bigg)}{\sqrt{D\bigg(\sum\limits_{k = 1}^{n} X_{k}\bigg)}} = \frac{\sum\limits_{k = 1}^{n} X_{k} - \sum\limits_{k = 1}^{n} \mu_{k}}{B_n} \]
的分布函数 \(F_n(x)\) 对于任意 \(x\),满足
\[ \begin{aligned} \lim_{n \to \infty} F_n(x) &= \lim_{n \to \infty} P\bigg\{\frac{\sum\limits_{k = 1}^{n} X_{k} - \sum\limits_{k = 1}^{n} \mu_{k}}{B_n} \leq x\bigg\} \\ &= \int_{-\infty}^{x} \frac{1}{\sqrt{2}\pi} \text{e}^{-t^2/2} \text{d}t = \Phi(x) \end{aligned} \]
棣莫弗-拉普拉斯定理
设随机变量 \(\eta_{n}(n = 1, 2, \cdots)\) 服从参数为 \(n\),\(p(0 < p < 1)\) 的二项分布,则对于任意 \(x\),有
\[ \lim_{n \to \infty} P\bigg\{\frac{\eta_n - np}{\sqrt{np(1 - p)}} \leq x\bigg\} = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \text{e}^{-t^2/2} \text{d}t = \Phi(x) \]