多元函数积分学
包括重积分、曲线积分与曲面积分和多元函数积分学的应用。
二重积分和三重积分的存在性
如果 \(f(x, y)\) 在平面有界闭区域 \(D\) 上连续,则二重积分 \(\iint\limits_{D} f(x, y) \text{d} \delta\) 存在。
如果 \(f(x, y, z)\) 在空间有界闭区域 \(\Omega\) 上连续,则三重积分 \(\iiint\limits_{D} f(x, y, z) \text{d} v\) 存在。
二重积分的计算
直角坐标系下,可以分别对 \(x\),\(y\) 求积分。
极坐标系下,有 \(\iint\limits_{D} f(x, y) \text{d}x \text{d}y = \iint\limits_{D'} f(r \cos \theta, r \sin \theta) r \text{d}r \text{d} \theta\)
一般而言,若变换 \(T : x = x(u, v)\),\(y = y(u, v)\),将 \(uOv\) 平面上的区域 \(D_{uv}\) 一一对应地映射成 \(xOy\) 平面上的区域 \(D_{xy}\),函数 \(x = x(u, v)\),\(y = y(u, v)\) 在 \(D_{uv}\) 上有连续的偏导数。变换 \(T\) 的雅可比行列式定义为 \[ J(u, v) = \begin{vmatrix} x_u & x_v \\ y_u & y_v \end{vmatrix} \] 也可以记为: \[ \frac{\partial (x, y)}{\partial (u, v)} \] 如果被积函数 \(f(x, y)\) 在区域 \(D_{xy}\) 上连续,且 \(J(u, v) \neq 0\),则有被积公式: \[ \iint\limits_{D_{xy}} f(x, y) \text{d}x \text{d}y = \iint\limits_{D_{uv}} f[x(u, v), y(u, v)] |J(u, v)| \text{d}u \text{d}v \]
含有参数的积分
设 \(f(x, y)\) 在矩形区域 \([a, b] \times [c, d]\) 上可积,则积分 \(I(x) = \int_{c}^{d} f(x, y) \text{d}y\) 称为含有参数 \(x\) 的积分。
如果 \(f(x, y)\) 在区域 \([a, b] \times [c, d]\) 上连续,则 \(I(x)\) 在 \([a, b]\) 上连续。
如果 \(f(x, y)\) 及 \(f_x(x, y)\) 在区域 \([a, b] \times [c, d]\) 上连续,则 \(I(x)\) 在 \([a, b]\) 上可导,且 \[ \frac{\text{d}}{\text{d}x} I(x) = \int_{c}^{d} f_x(x, y) \text{d} y \]
三重积分变量代换
空间点 \(P(x, y, z)\) 的柱坐标为 \(P(r, \theta, z)\),变换为 \(x = r \cos \theta\),\(y = r \sin \theta\),\(z = z\),此时,三重积分可以表示为: \[ \iiint\limits_{\Omega} f(x, y, z) \text{d} x \text{d} y \text{d} z = \iiint\limits_{\Omega'} f(r \cos \theta, r \sin \theta, z) r \text{d} z \text{d} r \text{d} \theta \]
空间点 \(P(x, y, z)\) 的球坐标为 \(P(r, \varphi, \theta)\),变换为 \(x = r \sin \varphi \cos \theta\),\(y = r \sin \varphi \sin \theta\),\(z = r \cos \varphi\),此时,三重积分可以表示为: \[ \iiint\limits_{\Omega} f(x, y, z) \text{d} x \text{d} y \text{d} z = \iiint\limits_{\Omega'} f(r \sin \varphi \cos \theta, r \sin \varphi \sin \theta, r \cos \varphi) r^2 \sin \varphi \text{d} r \text{d} \varphi \text{d} \theta \]
其中 \(\varphi\),\(\theta\) 分别是与 \(z\)正轴,\(x\)正轴的夹角
三重积分的一般变量代换,类似二重积分。
曲面面积和质心公式
设曲面 \(\Sigma : z = f(x, y)\) 在 \(xOy\) 做表面上的无重叠投影为 \(D_{xy}\),\(f(x, y)\) 在 \(D_{xy}\) 上有连续的偏导数,则曲面面积为 \[ S = \iint\limits_{D_{xy}} \sqrt{1 + \biggl(\frac{\partial z}{\partial x} \biggr)^2 + \biggl( \frac{\partial z}{\partial y} \biggr)^2} \text{d}x \text{d}y \]
空间区域的质心是 \((\bar{x}, \bar{y}, \bar{z})\),则 \(\bar{x} = \frac{\iiint\limits_{\Omega} x \text{d}v}{|\Omega|}\),其中 \(|\Omega|\) 指的是体积。
曲线积分与曲面积分
对弧长的曲线积分
灵活利用曲线的对称性和被积函数的奇偶性
设 \(C\) 是平面光滑曲线,\(f(x, y)\) 在 \(C\) 上连续,则曲线积分 \(\int_{C} f(x, y) \text{d}s\) 存在: \[ \int_{C} f(x, y) \text{d}s = \int_{\alpha}^{\beta} f[x(t), y(t)] \sqrt{x'^2(t) + y'^2(t)} \text{d}t \]
其中曲线 \(C\) 表示为参数形式:\(l : x = x(t), y = y(t)\),\(\alpha \leq t \leq \beta\)。
空间同理。
对坐标的曲线积分
与对弧长的曲线积分相比,对坐标的曲线积分不再具有单调性、积分中值公式、对称奇偶性。
设 \(C\) 为平面上一条有向光滑曲线,\(\mathbf{F} = \mathbf{F}(x, y) = (P(x, y), Q(x, y))\),为定义在 \(C\) 上的向量场,其中 \(P(x, y)\),\(Q(x, y)\) 在 \(C\) 上连续,则对坐标的曲线积分为: \[ \int_{C} P(x, y) \text{d}x + Q(x, y) \text{d}y = \int_{C} \mathbf{F} \cdot \text{d} \mathbf{r} = \int_{C} \mathbf{F} \cdot (\cos \alpha, \sin \alpha) \text{d}s \]
若 \(C\) 由参数方程 \(x = x(t), y = y(t)(\alpha \leq t \leq \beta)\) 给出,起点终点分别对应区间端点,则: \[ \int_{C} P(x, y) \text{d}x + Q(x, y) \text{d}y = \int_{\alpha}^{\beta} \{P[x(t), y(t)]x'(t) + Q[x(t), y(t)]y'(t)\} \text{d}t \]
空间同理
格林公式
设 \(D\) 是以光滑闭曲线 \(C\) 为边界的平面区域,函数 \(P(x, y), Q(x, y)\) 在 \(D\) 及 \(C\) 上有连续偏导数,则有格林公式: \[ \iint\limits_{D} (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) \text{d}x \text{d}y = \oint_{C} P \text{d}x + Q \text{d}y \]
其中 \(C\) 是 \(D\) 的取正向的边界曲线。
对面积的曲面积分
设光滑曲面 \(\Sigma\) 在 \(xOy\) 平面上的无重叠投影为 \(D\),则其方程可表示为 \(\Sigma : z = z(x, y)\),\((x, y) \in D\)。其中偏导数 \(z_x\),\(z_y\) 在 \(D\) 上连续,则有: \[ \iint\limits_{\Sigma} f(x, y, z) \text{d}S = \iint\limits_{D} f[x, y, z(x, y)] \sqrt{1 + z_x^2 + z_y^2} \text{d}x \text{d}y \]
其他坐标面同理
对坐标的曲面积分
设 \(\Sigma\) 是有向光滑曲面,\(P(x, y, z)\),\(Q(x, y, z)\),\(R(x, y, z)\) 在 \(\Sigma\) 上连续。
高斯公式
设三维空间中闭区域 \(\Omega\) 是由分片光滑的闭曲面 \(\Sigma\) 围成,函数 \(P(x, y, z)\),\(Q(x, y, z)\) 和 \(R(x, y, z)\) 在 \(\Omega\) 上偏导数连续,则有高斯公式: \[ \iiint\limits_{\Omega} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}\right) \text{d}v = \iint\limits_{\Sigma} P\text{d}y \text{d}z + Q\text{d}z \text{d}x + R\text{d}x \text{d}y \]
成立,其中 \(\Sigma\) 为 \(\Omega\) 整个边界曲面的外侧。
斯托克斯公式
设光滑曲面 \(\Sigma\) 的光滑边界曲线 \(C\),函数 \(P(x, y, z)\),\(Q(x, y, z)\) 和 \(R(x, y, z)\) 在 \(\Sigma\),\(C\) 上具有连续的偏导数,则有斯托克斯公式: \[ \oint_{C} P\text{d}x + Q\text{d}y + R\text{d}z = \iint\limits_{\Sigma}(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z})\text{d}y \text{d}z + (\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x})\text{d}z \text{d}x + (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y})\text{d}x \text{d}y \]
成立。其中 \(C\) 和 \(\Sigma\) 的方向符合右手法则。
例题
设 \(f(x)\) 在闭区间 \([0, 1]\) 上连续,且 \(\int_0^1 f(x) \text{d}x = m\),计算: \[ I = \int_0^1 \text{d}x \int_x^1 \text{d}y \int_x^y f(x) f(y) f(z) \text{d}z \]
设 \(F(u) = \int_0^u f(t) \text{d}t\),则: \[ \begin{align*} I &= \int_0^1 \text{d}x \int_x^1 \text{d}y \int_x^y f(x) f(y) \text{d} F(z) \\ &= \int_0^1 \text{d}x \int_x^1 \text{d}y f(x) f(y) (F(y) - F(x)) \\ &= \int_0^1 \text{d}x \int_x^1 f(x)(F(y) - F(x)) \text{d} F(y) \\ &= \int_0^1 \text{d} F(x) [\frac{F(1)^2}{2} - F(x)F(1) - \frac{F(x)^2}{2} + F(x)^2] \\ &= \frac{m^3}{6} \end{align*} \]
计算 \[ I = \iiint\limits_{\Omega} (x^2 + y^2 + z^2) \text{d}v \] 其中,\(\Omega: x^2 + y^2 \leq z \leq \sqrt{2 - x^2 - y^2}\)
构建球坐标系,参数方程为:\(x = r \sin \varphi \cos \theta\),\(y = r \sin \varphi \sin \theta\),\(z = r \cos \varphi\),\(0 \leq \theta \leq 2\pi\),\(0 \leq \varphi \leq \frac{\pi}{2}\),以 \(\varphi = \frac{\pi}{4}\) 为界限,将原积分分为上下积分,同时通过 \(z\) 的范围得出两个区域对应 \(r\) 的范围。
\[ \begin{align*} I &= \iiint\limits_{\Omega^1} + \iiint\limits_{\Omega^2} \\ &= \int_{0}^{2\pi} \text{d} \theta \int_{0}^{\frac{\pi}{4}} \sin \varphi \text{d} \varphi \int_{0}^{\sqrt{2}} r^4 \text{d} r + \int_{0}^{2\pi} \text{d} \theta \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin \varphi \text{d} \varphi \int_{0}^{\frac{\cos \varphi}{\sin^2 \varphi}} r^4 \text{d} r \\ &= \frac{\pi}{60}(96\sqrt{2} - 89) \end{align*} \]
设区域 \(\Omega: \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \leq 1\)。计算下列积分: \[ I = \iiint\limits_{\Omega}(x^2 + y^2 + z^2) \text{d}v \]
\[ \begin{align*} I &= \iiint\limits_{\Omega} x^2 \text{d}v + \iiint\limits_{\Omega} y^2 \text{d}v + \iiint\limits_{\Omega} z^2 \text{d}v \\ &= \frac{4\pi abc}{15}(a^2 + b^2 + c^2) \end{align*} \]
设 \(L\) 是圆 \(x^2 + y^2 = a^2\) 的正向,求 \[ I = \oint_{L} \frac{-y \text{d}x + x \text{d}y}{Ax^2 + 2Bxy + Cy^2} (A > 0, AC - B^2 > 0) \]
经计算,有\(\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}\)。故考虑做 \(L'\) 是椭圆 \(Ax^2 + 2Bxy + Cy^2 = r^2\) 的正向,则:
\[ I = \oint_{L + L'_{-}} + \oint_{L'} = \oint_{L'} = \lim\limits_{r \to 0}\frac{1}{r^2} \oint_{L'} -y \text{d}x + x \text{d}y = \lim\limits_{r \to 0}\frac{1}{r^2} \iint\limits_{S} 2 \text{d} \delta \]
即:
\[ I = \lim\limits_{r \to 0} \frac{1}{r^2} 2 \frac{1}{r^2} \frac{1}{\sqrt{AC - B^2}} \pi = \frac{2\pi}{\sqrt{AC - B^2}} \]
设函数 \(u(x, y)\),\(v(x, y)\) 在闭区域 \(D: x^2 + y^2 \leq 1\) 上有一阶连续偏导数,且在 \(D\) 的边界上 \(u(x, y) = 1\),\(v(x, y) = y\)。向量函数 \(\mathbb{f}(x, y) = (v(x, y), u(x, y))\),\(\mathbb{g}(x, y) = (u_x - u_y, v_x - v_y)\),求 \(\iint\limits_{D} \mathbb{f} \cdot \mathbb{g} \text{d} \delta\)
根据题目条件和格林公式,原积分可以变为:
\[ \iint\limits_{D} \mathbb{f} \cdot \mathbb{g} \text{d} \delta = \iint\limits_{D} [v(x, y)u_x + u(x, y)v_x - (u(x, y)v_y + v(x, y)u_y)] \text{d} \delta = \oint_{x^2 + y^2 = 1} uv \text{d}x + uv \text{d} y = \int_{0}^{2\pi} [-\sin^2 t + \cos t \sin t] \text{d} t = - \pi \]
设 \(L\) 是不经过 \((2, 0)\),\((-2, 0)\) 的正向光滑闭曲线,试就 \(L\) 的不同情形计算曲线积分: \[ I = \oint_{L} \biggl ( \frac{y}{(2 - x)^2 + y^2} + \frac{y}{(2 + x)^2 + y^2} \biggl ) \text{d}x + \biggl ( \frac{2 - x}{(2 - x)^2 + y^2} - \frac{2 + x}{(2 + x)^2 + y^2}\biggl ) \text{d}y \]
(1). 当曲线不包含两点时,有格林公式得:
\[ I = \iint\limits_{D} 0 \text{d} \delta = 0 \]
(2). 当曲线只包含两点中的一点 \((2, 0)\),考虑 \(C_{+}\) 是圆 \((2 - x)^2 + y^2 = r^2\) 的正向,则原积分变为:
\[ I = \oint_{C_{+}} \biggl ( \frac{y}{r^2} + \frac{y}{(2 + x)^2 + y^2}\biggl ) \text{d} x + \biggl ( \frac{2 - x}{r^2} - \frac{2 + x}{(2 + x)^2 + y^2} \biggl ) \text{d}y \]
由格林公式得到:
\[ \begin{align} I &= \iint\limits_{D_{C}} \biggl [ -\frac{1}{r^2} - \frac{(2 + x)^2 + y^2 - 2(x + 2)^2}{(2 + x)^2 + y^2} - \frac{1}{r^2} - \frac{(2 + x)^2 + y^2 - 2y^2}{(2 + x)^2 + y^2} \biggl ] \text{d} \delta \\ &= \iint\limits_{D_{C}}\biggl [ -2\frac{1}{r^2} \biggl ] \text{d} \delta \\ &= -2\pi \end{align} \]
同理可得,只包含点 \((-2, 0)\) 时,\(I = -2\pi\)。
(3). 当同时包含两点时,由 (1) (2) 得此时 \(I = -4\pi\)
证明下列积分与路径无关,并计算给出的积分 \[ \begin{align} I &= \int_{(1, 2, 3)}^{(6, 1, 1)} yz \text{d}x + xz \text{d}y + xy \text{d}z \\ I &= \int_{(1, 0, -1)}^{(1, 2, 0)} (x^2 - 2yz) \text{d}x + (y^2 - 2xz) \text{d}y + (z^2 - 2xy) \text{d}z \end{align} \]
(1). 显然在空间中,恒有
\[ \frac{\partial yz}{\partial y} = \frac{\partial xz}{\partial x}, \frac{\partial yz}{\partial z} = \frac{\partial xy}{\partial x}, \frac{\partial xz}{\partial z} = \frac{\partial xy}{\partial y} \]
所以曲线积分与在空间中与路线无关,设原函数为 \(U(x, y, z)\),则
\[ U(x, y, z) = xyz + C \]
则原积分为 \(U(6, 1, 1) - U(1, 2, 3) = 0\)
(2). 显然在空间中,恒有
\[ \frac{\partial x^2 - 2yz}{\partial y} = \frac{\partial y^2 - 2xz}{\partial x}, \frac{\partial x^2 - 2yz}{\partial z} = \frac{\partial z^2 - 2xy}{\partial x}, \frac{\partial y^2 - 2xz}{\partial z} = \frac{\partial z^2 - 2xy}{\partial y} \]
所以曲线积分与在空间中与路线无关,设原函数为 \(U(x, y, z)\),则
\[ U(x, y, z) = \frac{1}{3}(x^3 + y^3 + z^3) - 2xyz + C \]
则原积分为 \(U(1, 2, 0) - U(1, 0, -1) = 3\)
设函数 \(\varphi(x)\) 具有连续的导数,在围绕原点的任意正向光滑的简单闭曲线 \(C\) 上,曲线积分
\[ \oint_{C} \frac{2xy \text{d}x + \varphi(x) \text{d}y}{x^4 + y^2} \] 的值为常数 \(K\)
- 设 \(L\) 是正向闭曲线 \((x - 2)^2 + y^2 = 1\)。证明:
\[ \oint_{C} \frac{2xy \text{d}x + \varphi(x) \text{d}y}{x^4 + y^2} = 0 \]
求函数 \(\varphi(x)\)
设 \(C\) 是围绕原点的简单光滑正向闭曲线,求
\[ \oint_{C} \frac{2xy \text{d}x + \varphi(x) \text{d}y}{x^4 + y^2} \]
(1). 设正向光滑曲线 \(L: l_1 + l_2\) 不包含原点且 \(l_1\),\(l_2\) 都以 \(A\),\(B\) 为端点。做同样以 \(A\),\(B\) 为端点的包含原点光滑正向曲线 \(l_3\),则
\[ \oint_{L} = \oint_{l_1 + l_3} - \oint_{l_{2-} + l_3} = K - K = 0 \]
所以,原积分结果为 \(0\)
(2). 当不包含原点时,曲线积分与路径无关,令 \(y = 0\),即;
\[ \varphi'(x)(x^4) - \varphi(x)(4x^3) = 2x^5 \]
解得:\(\varphi(x) = cx^4 - x^2\)
(3). 作曲线 \(C_{+}\) 是 \(x^4 + y^2 = 1\) 的正向,则由格林公式得:
\[ \oint_{C} = \oint_{C_{+}} = \iint_{D_{C_{+}}} (4cx^3 -4x ) \text{d} \delta = 0 \]
若给定曲线积分与路径无关,并且 \(\int_{(0, 0)}^{(t, t^2)} f(x, y) \text{d}x + x \cos y \text{d}y = t^2\),其中 \(f(x, y)\) 有连续的偏导数,求 \(f(x, y)\)。
\[ \frac{\partial f(x, y)}{\partial y} = \frac{\partial x \cos y}{\partial x} = \cos y \]
设 \(f(x, y) = \sin y + F(x)\),则原积分变为:
\[ \int_{(0, 0)}^{(t, t^2)} (\sin y + F(x)) \text{d}x + x \cos y \text{d}y = t^2 = \int_{(0, 0)}^{(t, t^2)} F(x) \text{d}x + d(x \sin y) \]
所以,
\[ \int_{0}^{t} F(x) \text{d}x = t^2 - t\sin t^2 \Rightarrow F(x) = 2x - \sin x^2 - 2x^2 \cos x^2 \]
综上,\(f(x, y) = \sin y + 2x - \sin x^2 - 2x^2 \cos x^2\)
设函数 \(f(x)\) 在 \((-\infty, +\infty)\) 内具有连续导数,求积分
\[ \int_{C} \frac{1 + y^2 f(xy)}{y} \text{d} x + \frac{x}{y^2}(y^2f(xy) - 1) \text{d}y \]
其中 \(C\) 是从点 \(A(3, \frac{2}{3})\) 到点 \(B(1, 2)\) 的直线段。
\[ \begin{align*} \frac{\partial P}{\partial y} &= \frac{(2yf(xy) + xy^2f'(xy))y - (1 + y^2f(xy))}{y^2} = f(xy) - \frac{1}{y^2} + xyf'(xy) \\ \frac{\partial Q}{\partial x} &= \frac{1}{y^2}(y^2f(xy) - 1) + \frac{x}{y^2}(y^3f'(xy)) = f(xy) - \frac{1}{y^2} + xy f'(xy) \end{align*} \]
说明两偏导数相等,故积分结果与路径无关,沿折线 \((3, \frac{2}{3}) \to (1, \frac{2}{3}) \to (1, 2)\) 求积分,则原式为
\[ \int_{C} = \int_{(3, \frac{2}{3})}^{(1, \frac{2}{3})} + \int_{(1, \frac{2}{3})}^{(1, 2)} = \int_{3}^{1} \frac{3}{2}[1 + \frac{4}{9}f(\frac{2}{3}x)] \text{d} x + \int_{\frac{2}{3}}^{2} \frac{1}{y^2}[y^2f(y) - 1] \text{d} y = -3 - 1 = -3 \]
设曲面 \(\Sigma: x^2 + y^2 + z^2 = 1\),计算下列对面积的曲面积分:
(1). \[ \iint\limits_{\Sigma} \frac{xy + yz + xz}{\sqrt{x^2 + y^2 + z^2}} \text{d} S \]
(2). \[ \iint\limits_{\Sigma} (x^2 + y^2 + x + y) \text{d}S \]
(1). 由对称性易得结果为 \(0\)
(2). 先由对称性得原积分等价于 \[ \iint\limits_{\Sigma} x^2 + y^2 \text{d}S \]
再由轮换对称性,得 \[ \iint\limits_{\Sigma} (x^2 + y^2) \text{d}S = \frac{2}{3} S = \frac{8}{3} \pi \]
计算 \(I = \iint\limits_{\Sigma} \frac{\text{d} S}{r^2}\),\(\Sigma\) 是柱面 \(x^2 + y^2 = R^2\) 介于平面 \(z = 0\) 和 \(z = H(> 0)\) 的部分,\(r\) 为 \(\Sigma\) 上的点到原点的距离。
原积分 \[ \iint\limits_{\Sigma} \frac{1}{R^2 + z^2} \text{d}S \]
取面积微元 \(\text{d} S = R \text{d}\theta \text{d}z\),则原积分变为 \[ \int_{0}^{2\pi} \text{d} \theta \int_{0}^{H} \frac{R}{R^2 + z^2} \text{d}z = 2\pi \arctan \frac{H}{R} \]
计算 \(I = \iint\limits_{\Sigma} (xy + yz + xz) \text{d}S\),其中 \(\Sigma\) 是圆锥面 \(z = \sqrt{x^2 + y^2}\) 被圆柱面 \(x^2 + y^2 = 2ax(a > 0)\) 所截部分。
显然曲面关于关于 \(y\) 轴对称,则原式变为: \[ \iint\limits_{\Sigma} xz \text{d}S \]
曲面 \(\Sigma\) 在 \(xOy\) 平面上的无重叠投影为 \(D: x^2 + y^2 = 2ax\),则有: \[ \iint\limits_{\Sigma} = \iint\limits_{D} x\sqrt{x^2 + y^2} \sqrt{2} \text{d}x \text{d}y = 2\sqrt{2} \int_{0}^{\frac{\pi}{2}} \cos \theta\text{d} \theta \int_{0}^{2a \cos \theta} r^3 \text{d} r = \frac{64 a^4 \sqrt{2}}{15} \]
设 \(S\) 为椭球面 \(\frac{x^2}{2} + \frac{y^2}{2} + z^2 = 1\) 的上半部分 \((z > 0)\),点 \(P(x, y ,z) \in S\),\(\Pi\) 为 \(S\) 在 \(P\) 点处的切平面,\(\rho(x, y, z)\) 为原点到平面 \(\Pi\) 的距离,求 \(I = \iint\limits_{S} z^3 \rho(x, y, z) \text{d}S\)。
点 \((X, Y, Z)\) 处的切平面方程为 \(\Pi: X(x - X) + Y(y - Y) +2Z(z - Z) = 0 \Rightarrow xX + yY + 2zZ = 2\),所以原点到切平面的距离为: \[ \rho(x, y, z) = \frac{2}{\sqrt{x^2 + y^2 + 4z^2}} \]
\[ \begin{align*} \frac{\partial z}{\partial x} &= \frac{-x}{2\sqrt{1 - \frac{x^2}{2} - \frac{y^2}{2}}} \\ \frac{\partial z}{\partial y} &= \frac{-y}{2\sqrt{1 - \frac{x^2}{2} - \frac{y^2}{2}}} \end{align*} \]
曲面 \(S\) 在 \(xOy\) 平面上的无重叠投影为 \(D: x^2 + y^2 \leq 2\)。故,原式为 \[ \begin{align*} I &= \iint\limits_{S} z^3 \cdot \frac{2}{\sqrt{x^2 + y^2 + 4z^2}} \text{d}S = \iint_{D} \sqrt{\frac{1 - \frac{x^2}{4} - \frac{y^2}{4}}{1 - \frac{x^2}{2} - \frac{y^2}{2}}} \cdot \sqrt{\frac{(1 - \frac{x^2}{2} - \frac{y^2}{2})^3}{1 - \frac{x^2}{4} - \frac{y^2}{4}}} \text{d}x \text{d}y \\ &= \iint\limits_{D} (1 - \frac{x^2}{2} - \frac{y^2}{2}) \text{d}x \text{d}y = \int_{0}^{2\pi} \text{d} \theta \int_{0}^{\sqrt{2}} (1 - \frac{\rho^2}{2}) \rho \text{d} \rho = \pi \end{align*} \]
设函数 \(f(x)\) 连续,\(a\),\(b\),\(c\) 为常数,\(\Sigma\) 是单位球面 \(x^2 + y^2 + z^2 = 1\)。记第一型曲面积分 \(I = \iint\limits_{\Sigma} f(ax + by + cz) \text{d}S\)。求证:\(I = 2\pi \int_{-1}^{1} f(\sqrt{a^2 + b^2 + c^2}u) \text{d}u\)
做旋转变换,其中 \(u = \frac{a}{\sqrt{a^2 + b^2 + c^2}} x + \frac{b}{\sqrt{a^2 + b^2 + c^2}} y + \frac{c}{\sqrt{a^2 + b^2 + c^2}} z\),\(v\),\(w\)。\(\Sigma': u^2 + v^2 + w^2 = 1\),则原积分为: \[ I = \iint\limits_{\Sigma'} f(\sqrt{a^2 + b^2 + c^2}u) \text{d} S = 2\iint\limits_{\Sigma'^{\uparrow}} f(\sqrt{a^2 + b^2 + c^2}u) \text{d} S \]
\(\Sigma'^{\uparrow}\) 在 \(uOv\) 平面上的无重叠投影 \(D: u^2 + v^2 \leq 1\),原积分为: \[ I = 2\iint\limits_{D} f(\sqrt{a^2 + b^2 + c^2}u) \frac{1}{\sqrt{1 - u^2 - v^2}}\text{d}u \text{d}v = 2\pi \int_{-1}^{1} f(\sqrt{a^2 + b^2 + c^2}u) \text{d}u \]
求 \(F(t) = \iint\limits_{x + y + z = t} f(x, y, z) \text{d}S\),其中, \[ f(x, y, z) = \begin{cases} 1 - x^2 - y^2 - z^2, &x^2 + y^2 + z^2 \leq 1 \\ 0, &x^2 + y^2 + z^2 > 1 \end{cases} \]
显然要求 \(|t| < \sqrt{3}\),此时记球体与平面相交圆域为 \(\Sigma_{t}\),旋转当前坐标系到 \(uvw\) 坐标系,且保证 \(w = \frac{t}{\sqrt{3}}\),由旋转特性,知: \[ F(t) = \iint\limits_{\Sigma_{t}} (1 - u^2 - v^2 - \frac{t^2}{3}) \text{d}S = \int_{0}^{2\pi} \text{d} \theta \int_{0}^{1 - \sqrt{\frac{t^2}{3}}} (1 - r^2 - \frac{t^2}{3})r \text{d} r = \frac{\pi}{18}(3 - t^2)^2 \]
求 \(I = \iint\limits_{\Sigma} (\frac{\text{d}y \text{d}z}{x} + \frac{\text{d}z \text{d}x}{y} + \frac{\text{d}x \text{d}y}{z})\),其中,\(\Sigma\) 为椭球面 \(\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1\) 的外表面。
\(\Sigma\) 在 \(xOy\) 平面的投影有重叠,故将其分为 \(\Sigma_{+}: z = c\sqrt{1 - \frac{x^2}{a^2} - \frac{y^2}{b^2}}\) 和 \(\Sigma_{-}: z = -c\sqrt{1 - \frac{x^2}{a^2} - \frac{y^2}{b^2}}\) 上下两个对称的部分,则: \[ \iint\limits_{\Sigma} \frac{\text{d}x \text{d}y}{z} = \iint\limits_{\Sigma_{+}} + \iint\limits_{\Sigma_{-}} = 2\iint\limits_{D} \frac{\text{d}x \text{d}y}{c\sqrt{1 - \frac{x^2}{a^2} - \frac{y^2}{b^2}}} = 4\pi \frac{ab}{c} \]
同理可得,\(\iint\limits_{\Sigma} \frac{\text{d}y \text{d}z}{x} = 4\pi \frac{bc}{a}\),\(\iint\limits_{\Sigma} \frac{\text{d}x \text{d}z}{y} = 4\pi \frac{ac}{b}\),故: \[ I = 4\pi abc(\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}) \]
计算 \(I = \iint\limits_{\Sigma} \frac{x \text{d}y \text{d}z + z^2 \text{d}x \text{d}y}{x^2 + y^2 + z^2}\),其中 \(\Sigma\) 为由曲面 \(x^2 + y^2 = R^2\) 及平面 \(z = R\),\(z = -R\) 所围成立体的外侧。
设 \(\Sigma_1\),\(\Sigma_2\),\(\Sigma_3\),分别表示 \(\Sigma\) 的上、下和侧面部分的曲面。
\[ \iint\limits_{\Sigma_1 + \Sigma_2} = \frac{R^2 \text{d}x \text{d}y}{x^2 + y^2 + R^2} = 0 \]
所以, \[ I = \iint\limits_{\Sigma_3} \frac{x \text{d}y \text{d}z}{R^2 + z^2} = 2\iint\limits_{D_{yz}} \frac{\sqrt{R^2 - y^2}}{R^2 + z^2} \text{d}y \text{d}z = \frac{\pi^2 R}{2} \]
计算 \(I = \iint\limits_{\Sigma} x \text{d}y \text{d}z + y \text{d}x \text{d}z + z \text{d}x \text{d}y\),其中 \(\Sigma\) 是曲面 \(z = 2 - x^2 - y^2\) 被平面 \(2x + 2y + z = 0\) 所截的上部,方向向上。
所截平面在 \(xOy\) 平面内的无重叠投影 \(D\) 为 \((x - 1)^2 + (y - 1)^2 \leq 4\),且由积分坐标变换公式,得到 \(\text{d}y \text{d}z = \frac{n_x}{n_{z}} \text{d}x \text{d}y = 2x \text{d}x \text{d}y\),\(\text{d}x \text{d}z = \frac{n_y}{n_{z}} \text{d}x \text{d}y = 2y \text{d}x \text{d}y\),故原积分为:
\[ \iint\limits_{\Sigma} (2x^2 + 2y^2 + 2 - x^2 - y^2) \text{d}x \text{d}y = \iint\limits_{D} [x^2 + y^2 + 2 ]\text{d}x \text{d}y \]
取坐标变换 \(T: u = x - 1, v = y - 1\),则原积分为:
\[ \iint\limits_{u^2 + v^2 \leq 4} [(u + 1)^2 + (v + 1)^2 + 2] \text{d}u \text{d}v = \int_{0}^{2 \pi} \text{d}\theta \int_{0}^{2} r[r^2 + 2r (\sin \theta + \cos \theta) + 4] \text{d}r = 24 \pi \]
求 \(I = \iint\limits_{\Sigma} (x - y + z) \text{d}y \text{d}z + (y - z + x) \text{d}z \text{d}x + (z - x + y) \text{d}x \text{d}y\),其中 \(\Sigma\) 为曲面 \(|x - y + z| + |y - z + x| + |z - x + y| = 1\) 的外侧。
由高斯公式得,\(I = 3\iiint\limits_{V} \text{d}x \text{d}y \text{d}z\),做坐标变换 \(T: u = x - y + z, v = y - z + x, w = z - x + y\),则原积分为变为:
\[ I = \iiint\limits_{|u| + |v| + |z| \leq 1} |J(u, v, w)| \text{d}u \text{d}v \text{d}w = \frac{3}{4} \iiint\limits_{|u| + |v| + |z| \leq 1} \text{d}u \text{d}v \text{d}w = 1 \]
设 \(\Sigma\) 是曲面 \(x^2 + y^2 + z^2 = a^2\) 的外侧,\(\cos \alpha\),\(\cos \beta\),\(\cos \gamma\) 是其外法线向量的方向余弦,求 \(I = \iint\limits_{\Sigma} \frac{x \cos \alpha + y \cos \beta + z \cos \gamma}{(x^2 + y^2 + z^2)^{\frac{3}{2}}} \text{d}S\)
由两类曲面积分之间的关系及高斯公式得:
\[ I = \iint\limits_{\Sigma} \frac{x \text{d}y \text{d}z + y \text{d}x \text{d}z + z \text{d}x \text{d}y}{(x^2 + y^2 + z^2)^{\frac{3}{2}}} = \frac{3}{a^3} \iiint\limits_{V} \text{d}v = 4 \pi \]
\(\iint\limits_{\Sigma} \frac{ax \text{d}y \text{d}z + (z + a)^2 \text{d}x \text{d}y}{(x^2 + y^2 + z^2)^{\frac{1}{2}}}\),其中 \(\Sigma\) 为下半球面 \(z = -\sqrt{a^2 - x^2 - y^2}\) 的上侧,\(a > 0\)。
做区域 \(D: x^2 + y^2 \leq a^2\) 方向向下,与 \(\Sigma\) 合并于一个分片光滑的空间 \(\Omega\),则由高斯公式得:
\[ \iint\limits_{\Sigma + D} = -\frac{1}{a}\iiint\limits_{\Omega} (3a + 2z ) \text{d}v = -2\pi a^3 - \frac{2}{a} \iiint\limits_{V} z \text{d}v = \iint\limits_{\Sigma} - \pi a^3 \]
解得:\(\iint\limits_{\Sigma} = -\frac{\pi}{2} a^3\)
计算 \(I = \iint\limits_{\Sigma} (8y + 1)x \text{d}y \text{d}z + 2(1 - y^2) \text{d}z \text{d}x - 4yz \text{d}x \text{d}y\),其中 \(\Sigma\) 是 \(yOz\) 坐标面上的曲线段 \(z = \sqrt{y - 1}(1 \leq y \leq 3)\) 绕 \(y\) 轴旋转一周所生成的曲面的左侧。
由旋转曲面公式得 \(\Sigma: x^2 + z^2 = y - 1(1 \leq y \leq 3)\),补面 \(\Sigma_1: y = 1\) 左侧,\(\Sigma_2: y = 3\) 右侧,所得空间 \(\Omega\) 由分片光滑的曲面组成,则由高斯公式得:
\[ \iint\limits_{\Sigma + \Sigma_1 + \Sigma_2} = - \iiint\limits_{\Omega} \text{d}v = -\int_{1}^{3} \text{d}y \iint_{D_{xz}} \text{d} \delta = - \pi \int_{1}^{3} (y - 1) \text{d}y = -2 \pi = I + 32 \pi \]
所以,\(I = 34 \pi\)
计算曲线积分 \(I = \oint_{C} (z - y) \text{d}x + (x - z) \text{d}y + (x - y) \text{d}z\),其中,\(C: \begin{cases} x^2 + y^2 = 1 \\ x - y + z = 2\end{cases}\),从 \(z\) 正向看去,\(C\) 的方向是顺时针的。
由斯托克斯公式得:
\[ \oint_{C} = -2\iint\limits_{x^2 + y^2 \leq 1} \text{d}x \text{d}y = -2 \pi \]
设空间曲线 \(C\) 由立方体:\(0 \leq x \leq 1\),\(0 \leq y \leq 1\),\(0 \leq z \leq 1\) 的表面与平面 \(x + y + z = \frac{3}{2}\) 相截而成,试计算 \(|\oint_{C} (z^2 - y^2) \text{d}x + (x^2 - z^2) \text{d}y + (y^2 - x^2) \text{d}z|\)。
由斯托克斯公式得:
\[ |\oint_{C}| = |\iint\limits_{\Sigma} (-2y + 2z)\text{d}y \text{d}z + (-2z + 2x) \text{d}z \text{d}x + (-2x + 2y)\text{d}x \text{d}y| = |\frac{6}{\sqrt{3}}\iint\limits_{S} \text{d}S| = \frac{9}{2} \]
设函数 \(f(x)\) 连续可导,\(P = Q = R = f((x^2 + y^2)z)\)。有向曲线 \(\Sigma_{t}\) 是圆柱体 \(x^2 + y^2 \leq t^2\),\(0 \leq z \leq 1\) 表面的外侧。第二型曲面积分。\(I_t = \iint\limits_{\Sigma_{t}} P \text{d}y \text{d}z + Q \text{d}z \text{d}x + R \text{d}x \text{d}y\),求极限 \(\lim\limits_{t \to 0^+} \frac{I_t}{t^4}\)。
设 \(\Sigma_1\),\(\Sigma_2\),\(\Sigma\)分别是柱体上表面、下表面和侧面部分的外侧,则
\[ I_t = \iint\limits_{\Sigma_1} f((x^2 + y^2)) \text{d}x \text{d}y + \iint\limits_{\Sigma_2} f(0) \text{d}x \text{d}y + 0 = \int_{0}^{2\pi} \text{d}\theta \int_{0}^{t} r f(r^2) \text{d}r - f(0) \pi t^2 \]
所以,
\[ \lim\limits_{t \to 0^+} \frac{I_t}{t^4} = \lim\limits_{t \to 0^+} \frac{2 \pi \int_{0}^{t} r f(r^2) \text{d}r - f(0) \pi t^2}{t^4} \]
由于 \(f(x)\) 连续,则其可积,其变上限积分可导,应用洛必达法则两次:
\[ \lim\limits_{t \to 0^+} \frac{2\pi t f(t^2) - 2f(0)\pi t}{4t^3} = \lim\limits_{t \to 0^+} \frac{\pi[f(t^2) - f(0)]}{2t^2} = \lim\limits_{t \to 0^+} \frac{2\pi t f'(t^2)}{4t} = \frac{\pi f'(0)}{2} \]
设 \(\Sigma\) 是一个光滑封闭曲面,方向朝外。给定第二型的曲面积分
\[ I = \iint\limits_{\Sigma} (x^3 - x) \text{d}y \text{d}z + (2y^3 - y) \text{d}z \text{d}x + (3z^3 - z) \text{d}x \text{d}y \]
试确定曲面 \(\Sigma\),使积分 \(I\) 值最小,并求该最小值。
由高斯公式得:
\[ I = 3\iiint\limits_{\Omega} (x^2 + 2y^2 + 3z^2 - 1) \text{d}v \]
显然 \(\Sigma: x^2 + 2y^2 + 3z^2 - 1 = 0\),此时被积函数对三重积分无贡献,做变换 \(T: u = x, v = \sqrt{2}y, w = \sqrt{3}z\),则原积分为:
\[ I = 3\iiint\limits_{u^2 + v^2 + w^2 \leq 1} (u^2 + v^2 + w^2 - 1) |J(u, v, w)| \text{d}v = 3\sqrt{\frac{1}{6}} \iiint\limits_{u^2 + v^2 + w^2 \leq 1} (u^2 + v^2 + w^2 - 1) \text{d}v = 3\sqrt{\frac{1}{6}} \int_{0}^{2\pi} \text{d} \theta \int_{0}^{\pi} \sin \varphi \text{d} \varphi \int_{0}^{1} r^2(r^2 - 1) \text{d} r = -4\sqrt{6}\frac{\pi}{15} \]
设一球缺高为 \(h\),所在球的半径为 \(R\)。
(1). 证明该球体缺的体积为 \(\frac{\pi}{3}(3R - h)h^2\),球冠的面积为 \(2\pi R h\)。
(2). 设球体 \((x - 1)^2 + (y - 1)^2 + (z - 1)^2 \leq 12\) 被平面 \(P: x + y + z = 6\) 所截的小球缺为 \(\Omega\)。记球缺上的球冠为 \(\Sigma\),方向指向球外,球第二型曲面积分 \(I = \iint\limits_{\Sigma} x \text{d}y \text{d}z + y \text{d}z \text{d}x + z \text{d}x \text{d}y\)。
(1). 体积公式:
\[ V = \int_{0}^{h} \text{d}z \pi(R^2 - (R - h + z)^2) = \pi \int_{0}^{h} (-h^2 - z^2 + 2Rh + 2hz - 2Rz)\text{d}z = \pi h^2(-\frac{1}{3}h + R) = \frac{\pi}{3}(3R - h)h^2 \]
(2). 做曲面 \(\Sigma'\) 为所截界面方向指向球外,则有高斯公式得
\[ \iint\limits_{\Sigma + \Sigma'} = 3\iiint\limits_{\Omega} \text{d}v = 3\pi(6\sqrt{3} - \sqrt{3}) = 15 \sqrt{3} \pi \]
\[ \iint\limits_{\Sigma'} = -\frac{6}{\sqrt{3}} \iint\limits_{\Sigma'} \text{d}S = -18\sqrt{3} \pi \]
所以,\(I = 33\sqrt{3}\pi\)
计算
\[ I = \iint\limits_{D} \frac{\text{d} x \text{d} y}{\sqrt{1 - \frac{x^2}{a^2} - \frac{y^2}{b^2}}}, D: \frac{x^2}{a^2} + \frac{y^2}{b^2} \leq 1 \]
令 \(u = \frac{x}{a}\),\(v = \frac{y}{b}\),则 \(u^2 + v^2 \leq 1\),原积分变为:
\[ \begin{aligned} I &= \iint\limits_{u^2 + v^2 \leq 1} \frac{\text{d}u \text{d}v}{\sqrt{1 - u^2 - v^2}} J(u, v) \\ &= ab \int_0^{2\pi} \text{d} \theta \int_0^1 \frac{r}{\sqrt{1 - r^2}} \text{d} r \\ &= 2\pi ab \end{aligned} \]
求由抛物线 \(y^2 = x\),\(y^2 = 2x\) 及双曲线 \(xy = 1\),\(xy = 4\) 所围成的区域 \(D\) 的面积 \(|D|\)。
令 \(u = \frac{y^2}{x}\),\(v = xy\),则 \(y^2 = x \to u = 1\),\(y^2 = 2x \to u = 2\),\(xy = 1 \to v = 1\),\(xy = 4 \to v = 4\),\(J(u, v) = -\frac{1}{u}\),则面积为:
\[ |D| = \iint\limits_{D} \text{d} x \text{d} y = \iint\limits_{D'} \frac{1}{u} \text{d} u \text{d} v = \ln 2 \]
计算由 \(y^2 = x\),\(y^2 = 2x\),\(x^2 = y\),\(x^2 = 2y\) 所围比区域 \(D\) 的面积 \(|D|\)。
作变化 \(u = \frac{x^2}{y}\),\(v = \frac{y^2}{x}\)。则:\(y^2 = x \to v = 1\),\(y^2 = 2x \to v = 1\),\(x^2 = y \to u = 1\),\(x^2 = y \to u = 1\),\(x^2 = 2y \to u = 2\)。新区域为 \(D'\)。
相应的雅可比行列式为:
\[ J(u, v) = \frac{1}{\frac{\partial (u, v)}{\partial (x, y)}} = \frac{1}{3} \]
则
\[ \iint\limits_{D} \text{d} \sigma = \iint\limits_{D'} \frac{1}{3} \text{d} \sigma = \frac{1}{3} \]
计算
\[ \iint\limits_{D} \frac{(x + y) \ln \biggl(1 + \frac{y}{x}\biggr)}{\sqrt{1 - x - y}} \text{d} x \text{d} y \]
其中区域 \(D\) 由直线 \(x + y = 1\) 与两坐标轴所围成的三角形区域。
做变换 \(u = x + y\),\(v = x\),则 \(x + y = 1 \to u = 1\),\(v = 0\),\(u = v\) 记新区域为 \(D'\)。
\[ \begin{aligned} J(u, v) = \frac{1}{\frac{\partial (u, v)}{\partial (x, y)}} &= -1 \\ \iint\limits_{D'} \frac{u \ln \biggl(\frac{u}{v}\biggr)}{\sqrt{1 - u}} \text{d} u \text{d} v &= \int_0^1 \text{d} u \int_0^u \frac{u\ln u}{\sqrt{1 - u}} \text{d} v - \int_0^1 \text{d} u \int_0^u \frac{u\ln v}{\sqrt{1 - u}} \text{d} v \\ \iint\limits_{D'} &= \int_0^1 \frac{u^2 \ln u}{\sqrt{1 - u}} \text{d} u - \int_0^1 \frac{u}{\sqrt{1 - u}} \biggl(u \ln u - u\biggr) \text{d} v \\ \iint\limits_{D'} &= \int_0^1 \frac{u^2}{\sqrt{1 - u}} \text{d} u = \frac{16}{15} \end{aligned} \]
设 \(f(x)\) 是连续的偶函数,证明:
\[ \iint\limits_{D} f(x - y) \text{d} x \text{d} y = 2 \int_0^{2a} [(2a - u)] f(u) \text{d} u \]
其中,\(D: |x| \leq a\),\(|y| \leq a (a > 0)\)。
令 \(u = x - y\),\(v = x + y\),则 \(|u| + |v| \leq 2a\),记新区域为 \(D'\),\(|J(u, v)| = \frac{1}{2}\),所以:
\[ \iint\limits_{D} = \iint\limits_{D'} f(u) \text{d} u \text{d} v = 2 \int_{0}^{2a} \text{d} u \int_{u - 2a}^{2a - u} f(u) \text{d} v = 2 \int_0^{2a} [(2a - u)] f(u) \text{d} u \]
设 \(f(u)\) 连续,\(k = \sqrt{a^2 + b^2 + c^2} \neq 0\)。证明:
\[ I = \iiint\limits_{\Omega} f(ax + by + cz) \text{d} x \text{d} y \text{d} z = \pi \int_{-1}^{1} (1 - u^2) f(ku) \text{d} u \]
其中,\(\Omega: x^2 + y^2 + z^2 \leq 1\)。
令 \(u = \frac{ax + by + cz}{k}\),对 \(Oxyz\) 坐标系作旋转变换,使得新的坐标轴 \(Ou\) 与 \((a, b, c)\) 同向。旋转变化公式的系数行列式恰是变换的雅可比行列式 \(J = 1\)。新区域 \(\Omega': u^2 + v^2 + w^2 \leq 1\),于是
\[ I = \int_{-1}^{1} f(ku) \text{d} u \iint\limits_{v^2 + w^2 \leq 1 - u^2} \text{d} v \text{d} w = \pi \int_{-1}^{1} (1 - u^2) f(ku) \text{d} u \]
计算
\[ I = \int_0^1 \frac{x^b - x^a}{\ln x} \text{d} x, a > 0, b > 0 \]
\[ I = \int_0^1 \biggl(\frac{x^t}{\ln x} \bigg |_{a}^{b}\biggr) \text{d} x = \int_0^1 \text{d} x \int_a^b x^t \text{d} t = \int_a^b \frac{\text{d} t}{t + 1} = \ln \frac{b + 1}{a + 1} \]
已知在 \([0, 1] \times [0, 1]\) 上函数 \(k(x, y)\) 连续,在 \(0 \leq x \leq 1\) 上函数 \(f(x)\),\(g(x)\) 都连续且无零点。假设对于所有满足 \(0 \leq x \leq 1\) 的 \(x\) 有
\[ \begin{aligned} \int_0^1 f(y) k(x, y) \text{d} y &= g(x) \\ \int_0^1 g(y) k(x, y) \text{d} y &= f(x) \end{aligned} \]
证明:对于 \(0 \leq x \leq 1\),有 \(f(x) = g(x)\)。
设 \(f(x)\) 是 \([0, 1]\) 上的连续函数,证明:
\[ \int_0^1 \text{e}^{f(x)} \text{d} x \int_0^1 \text{e}^{-f(x)} \text{d} x \geq 1 \]
\[ \int_0^1 \text{e}^{f(x)} \text{d} x \int_0^1 \text{e}^{-f(x)} \text{d} x = \int_0^1 \text{e}^{f(x)} \text{d} x \int_0^1 \text{e}^{-f(y)} \text{d} y = \iint\limits_{D} \text{e}^{f(x) - f(y)} \text{d} x \text{d} y \\ = \iint\limits_{D} \text{e}^{f(y) - f(x)} \text{d} x \text{d} y \]
所以,
\[ \iint\limits_{D} \text{e}^{f(x) - f(y)} \text{d} x \text{d} y = \frac{1}{2} \iint\limits_{D} \biggl(\text{e}^{f(x) - f(y)} + \text{e}^{f(y) - f(x)}\biggr) \text{d} x \text{d} y \geq \iint\limits_{D} \text{d} x \text{d} y = 1 \]
在 \([0, 1]\) 上 \(f(x) > 0\) 且连续、单调减少,证明:
\[ \frac{\int_0^1 x f^2(x) \text{d} x}{\int_0^1 x f(x) \text{d} x} \leq \frac{\int_0^1 f^2(x) \text{d} x}{\int_0^1 f(x) \text{d} x} \]
\[ \begin{aligned} \biggl(\int_0^1 x f^2(x) \text{d} x\biggr) \biggl(\int_0^1 f(x) \text{d} x\biggr) - \biggl(\int_0^1 x f(x) \text{d} x\biggr) \biggl(\int_0^1 f^2(x) \text{d} x\biggr) &\leq 0 \\ \biggl(\int_0^1 x f^2(x) \text{d} x\biggr) \biggl(\int_0^1 f(y) \text{d} y\biggr) - \biggl(\int_0^1 x f(x) \text{d} x\biggr) \biggl(\int_0^1 f^2(y) \text{d} y\biggr) &\leq 0 \\ \iint\limits_{D} \biggl(xf^2(x) f(y) - f^2(y) f(x) x\biggr) \text{d} x \text{d} y &\leq 0 \\ \iint\limits_{D} x f(x) f(y)\biggl(f(x) - f(y)\biggr) \text{d} x \text{d} y &\leq 0 \\ \iint\limits_{D} x f(x) f(y)\biggl(f(x) - f(y)\biggr) \text{d} x \text{d} y = \frac{1}{2} \iint\limits_{D} f(x) f(y)\biggl(f(x) - f(y)\biggr) (x - y)\text{d} x \text{d} y &\leq 0 \end{aligned} \]
最后的等式由 \(f(x)\) 的单调性得证。
设区域 \(D\) 在 \(x\) 轴和 \(y\) 轴上的投影区间分别为 \([a. b]\),\([c, d]\),\(D\) 的面积为 \(|D|\),点 \((\alpha, \beta) \in D\)。证明:
(1).
\[ \biggl|\iint\limits_{D} (x - \alpha) (y - \beta) \text{d} x \text{d} y\biggr| \leq (b - a) (d - c) |D| \]
(2).
\[ \biggl|\iint\limits_{D} (x - \alpha) (y - \beta) \text{d} x \text{d} y\biggr| \leq \frac{1}{4} (b - a)^2 (d - c)^2 \]
(1).
\[ \biggl|\iint\limits_{D} (x - \alpha) (y - \beta) \text{d} x \text{d} y\biggr| \leq \iint\limits_{D} |(x - \alpha)| |(y - \beta)| \text{d} x \text{d} y \leq \iint\limits_{D} (b - a) (d - c) \text{d} x \text{d} y = (b - a) (d - c) |D| \]
(2). 设区域 \(D': [a, b] \times [c, d]\),\(D \subseteq D'\)。
\[ \biggl|\iint\limits_{D} (x - \alpha) (y - \beta) \text{d} x \text{d} y\biggr| \leq \iint\limits_{D'} |(x - \alpha)| |(y - \beta)| \text{d} x \text{d} y = \int_a^b |x - \alpha| \text{d} x \int_c^d |y - \beta| \text{d} y \leq \frac{1}{4} (b - a)^2 (d - c)^2 \]
设区域 \(D: [0, 1] \times [0, 1]\),\(I = \iint\limits_{D} f(x, y) \text{d} x \text{d} y\),其中函数 \(f(x, y)\) 在 \(D\) 上有连续的二阶偏导数。若对任何 \(x\),\(y\) 有 \(f(0, y) = f(x, 0) = 0\),且 \(\frac{\partial^2 f}{\partial x \partial y} \leq A\)。证明:\(I \leq \frac{A}{4}\)。
\[ \begin{aligned} I &= \int_0^1 \text{d} y \int_0^1 f(x, y) \text{d} x = \int_0^1 \text{d} y \int_0^1 -f(x, y) \text{d} (1 - x) \\ &= \int_0^1 \text{d} y \int_0^1 (1 - x) f_1'(x, y) \text{d} x \\ &= \int_0^1 (1 - x) \text{d} x \int_0^1 f_1'(x, y) \text{d} y \\ &= \int_0^1 (1 - x) \text{d} x \int_0^1 (1 - y) f_{12}'(x, y) \text{d} y \leq \frac{A}{4} \end{aligned} \]
求由双叶玫瑰线 \((x^2 + y^2)^2 = 2a^2 (x^2 - y^2)\) 与外圆 \(x^2 + y^2 \geq a^2 (a > 0)\) 所构成图形的面积 \(A\)。
\[ A = 4 \int_0^{\frac{\pi}{6}} \text{d} \theta \int_a^{\sqrt{2} a \sqrt{\cos 2 \theta}} \rho \text{d} \rho = 4 \int_0^{\frac{\pi}{6}} a^2 \biggl(\cos 2 \theta -\frac{1}{2} \biggr) \text{d} \theta = 4 a^2 \biggl(\frac{\sqrt{3}}{4} - \frac{\pi}{12}\biggr) \]
计算 \(\iiint\limits_{\Omega} z \text{d} v\),其中 \(\Omega\) 是由曲面 \((x^2 + y^2 + z^2)^2 = 2 (z^2 - x^2 - y^2)\) 所围成的区域在 $z $ 的部分。
曲面的球坐标变换为 \(x = \rho \cos \theta \cos \varphi\),\(y = \rho \sin \theta \cos \varphi\),\(z = \rho \sin \varphi\)。
\[ \begin{aligned} \rho^4 &= 2 \rho^2 (\sin^2 \varphi - \cos^2 \varphi) \\ \rho &= \sqrt{- 2 \cos 2\varphi}, \quad \frac{\pi}{2} \geq \varphi \geq \frac{\pi}{4} \\ \iint\limits_{\Omega} &= \int_0^{2\pi} \text{d} \theta \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin^2 \varphi \text{d} \varphi \int_0^{\sqrt{-2\cos 2\varphi}} \rho^3 \text{d} \rho \\ &= 2\pi \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin^2 \varphi \cos^2 2\varphi \text{d} \varphi \end{aligned} \]
求曲面 \(x^2 + y^2 = az\) 和 \(z = 2a - \sqrt{x^2 + y^2}(a > 0)\) 所围成立体的表面积。
交线:
\[ \begin{cases} z = a \\ x^2 + y^2 = a^2 \end{cases} \]
立体在 \(xOy\) 坐标面的投影为 \(D: x^2 + y^2 \leq a^2\),表面积 \(|S|\)
\[ |S| = \iint\limits_{D} \sqrt{2} \text{d} \sigma + \iint\limits_{D} \sqrt{\frac{a^2 + 4(x^2 + y^2)}{a^2}} \text{d} \sigma = \pi a^2 \biggl(\sqrt{2} + \frac{5\sqrt{5} - 1}{6}\biggr) \]
求球面 \(x^2 + y^2 + z^2 = a^2\) 在柱面 \(x^2 + y^2 = \pm ax\) 外的那一部分的面积。
设面积为 \(A\)。
\[ \begin{aligned} A &= 4\pi a^2 - 4 \iint\limits_{(x - \frac{a}{2})^2 + y^2 \leq \frac{a^2}{4}} \frac{a}{\sqrt{a^2 - x^2 - y^2}} \text{d} x \text{d} y \\ &= 4\pi a^2 - 4a \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \text{d} \theta \int_0^{a\cos \theta} \frac{r}{\sqrt{a^2 - r^2}} \text{d} r \\ &= 4\pi a^2 - 4a \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \text{d} \theta (a - a \sin \theta) = 0 \end{aligned} \]
求锥面 \(\Sigma: z = \sqrt{3x^2 + 3y^2}\) 与平面 \(\Sigma_0: x + y + z = 2a(a > 0)\) 所围成的立体的表面积和体积。
交线在 \(xOy\) 坐标面的投影 \(D: x^2 + y^2 - xy + 2a(x + y) \leq 2a^2\),记表面积为 \(S\)。做变换 \(u = x -\frac{1}{2} y\),\(v = \frac{\sqrt{3}}{2} y\),则新区域为 \(D': u^2 + v^2 + 2a(u + \sqrt{3} v) \leq 2a^2\),即 \(D': (u + a)^2 + (v + \sqrt{3} a)^2 \leq 6a^2\)
\[ S = \iint\limits_{D'} \biggl(\sqrt{3} + \sqrt{4}\biggr) \frac{2}{\sqrt{3}}\text{d} u \text{d} v = 4a^2 \pi (3 + 2\sqrt{3}) \]
记体积为 \(V\),记原点到 \(\Sigma_0\) 的距离为 \(h_0\)。
\[ h_0 = \frac{2a}{\sqrt{3}} \]
所截 \(\Sigma_0\) 的面积 \(S_0\) 为:
\[ S_0 = \iint\limits_{D'} \sqrt{3} \text{d} \sigma = 6\sqrt{3} \frac{2}{\sqrt{3}} a^2 \pi \]
所以,
\[ V = \frac{1}{3} h_0 S_0 = \frac{8}{\sqrt{3}} a^3 \pi \]
设 \(f(x, y)\) 在区域 \(0 \leq x \leq 1\),\(0 \leq y \leq 1\) 上可微,且 \(f(0, 0) = 0\)。证明:
\[ \lim_{x \to 0^+} \frac{\int_0^{x^2} \text{d} t \int_{\sqrt{t}}^{x} f(t, u) \text{d} u}{1 - \text{e}^{-\frac{x^4}{4}}} = f_y(0, 0) \]
\[ \begin{aligned} \lim_{x \to 0^+} \frac{\int_0^{x^2} \text{d} t \int_{\sqrt{t}}^{x} f(t, u) \text{d} u}{1 - \text{e}^{-\frac{x^4}{4}}} &= \lim_{x \to 0^+} \frac{\int_{\sqrt{t}}^{x} \bigl(\int_0^{u^2} f(t, u) \text{d} t\bigr) \text{d} u}{\frac{x^4}{4}} \\ &= \lim_{x \to 0^+} \frac{\int_0^{x^2} f(t, x) \text{d} t}{x^3} \\ &= \lim_{x \to 0^+} \frac{x^2f(\xi, x)}{x^3}, \quad x^2 > \xi > 0 \\ &= \lim_{x \to 0^+} \frac{f_x(0, 0) \xi + f_y(0, 0)x + o(\sqrt{\xi^2 + x^2})}{x} = f_y(0, 0) \end{aligned} \]
设 \(D\) 是平面上由光滑封闭曲线围成的有界区域,其面积 \(A > 0\),函数 \(f(x, y)\) 在该区域及其边界上连续且 \(f(x, y) > 0\)。记 \(J_n = \bigl(\frac{1}{A} \iint\limits_{D} f^{\frac{1}{n}} (x, y) \text{d} \sigma \bigr)^n\),求 \(\lim\limits_{n \to \infty} J_n\)。
\[ \begin{aligned} \lim\limits_{n \to \infty} J_n &= \lim\limits_{n \to \infty} \exp \biggl(n \ln \frac{1}{A} \iint\limits_{D} f^{\frac{1}{n}} (x, y) \text{d} \sigma \biggr) \\ &= \lim\limits_{m \to 0} \exp \biggl(\frac{\ln \frac{1}{A} \iint\limits_{D} \text{e}^{m \ln f(x, y)} \text{d} \sigma}{m} \biggr) \\ &= \lim\limits_{m \to 0} \exp \biggl(\frac{1}{\iint\limits_{D} \text{e}^{m \ln f(x, y)} \text{d} \sigma} \iint\limits_{D} \ln f(x, y) \text{e}^{m \ln f(x, y)} \text{d} \sigma \biggr) \\ &= \exp \biggl(\frac{1}{A} \iint\limits_{D} \ln f(x, y) \text{d} \sigma \biggr) \end{aligned} \]
设 \(f(x)\) 在 \((-\infty, +\infty)\) 上非负且连续,并有 \(f(x) \int_0^{x} f(x - t) \text{d} t = \sin^4 x\)。求 \(\int_0^{\pi} f(x) \text{d} x\)。
\[ \begin{aligned} f(x) \int_0^{x} f(x - t) \text{d} t &= \sin^4 x \\ f(x) \int_0^{x} f(u) \text{d} u &= \sin^4 x \\ \int_0^{\pi} \text{d} x f(x) \int_0^{x} f(u) \text{d} u &= \int_0^{\pi} \sin^4 x \text{d} x \\ \int_0^{\pi} \text{d} x f(x) \int_0^{x} f(u) \text{d} u &= \frac{3}{8} \pi \\ \biggl(\int_0^{\pi} f(x) \text{d} x\biggr)^2 &= \frac{3}{4} \pi \\ \int_0^{\pi} f(x) \text{d} x &= \frac{\sqrt{3\pi}}{2} \end{aligned} \]