不定积分与定积分

基本积分公式

  1. \[ \int \frac{1}{x^2 + a^2} \text{d} x = \frac{1}{a} \arctan \frac{x}{a} + C \]

  2. \[ \int \frac{1}{x^2 - a^2} \text{d} x = \frac{1}{2a} \ln \biggl | \frac{x - a}{x + a} \biggr | + C \]

  3. \[ \int \frac{1}{\sqrt{a^2 - x^2}} \text{d} x = \arcsin \frac{x}{a} + C \]

  4. \[ \int \frac{1}{\sqrt{x^2 \pm a^2}} \text{d} x = \ln \bigl | x + \sqrt{x^2 \pm a^2} \bigr | + C \]

  5. \[ \int \sqrt{a^2 - x^2} \text{d} x = \frac{1}{2} \bigl (x\sqrt{a^2 - x^2} + a^2 \arcsin \frac{x}{a} \bigr) + C \]

  6. \[ \int \sqrt{x^2 \pm a^2} \text{d} x = \frac{1}{2} \bigl ( x\sqrt{x^2 \pm a^2} \pm a^2 \ln \bigl| x + x \sqrt{x^2 \pm a^2} \bigr| \bigr) + C \]

  7. \[ \int \sec x \text{d} x = \ln |\sec x + \tan x| + C \]

  8. \[ \int \csc x \text{d} x = \ln |\csc x - \cot x| + C \]

  9. \[ \int \tan x \text{d} x = - \ln | \cos x | + C \]

  10. \[ \int \cot x \text{d} x = \ln |\sin x| + C \]

不能表示为初等函数的积分

  1. \[ \int \text{e}^{\pm x^2} \text{d} x \]

  2. \[ \int \frac{\sin x}{x} \text{d} x \]

  3. \[ \int \sin x^2 \text{d} x \]

  4. \[ \int \frac{\text{d} x}{\ln x} \]

  5. \[ \int \frac{\text{d} x}{\sqrt{1 + x^4}} \]

  6. \[ \int \sqrt{1 + x^3} \text{d} x \]

  7. \[ \int \sqrt{1 - k^2 \sin^2 x}\text{d} x \]

有理函数积分

  1. 两种最简分式形式

    1. \[ \int \frac{1}{(x - a)^k} \text{d} x \]
    2. \[ \int \frac{Ax + B}{(x^2 + px + q)^k} \text{d} x \ (p^2 - 4q < 0)\]
  2. 对于积分 \[ \int \frac{\text{d} x}{(x^2 + r^2)^k} = I_k \]

    有递推公式: \[ I_k = \frac{1}{2(k - 1)r^2}\bigg(\frac{t}{(t^2 + r^2)^{k - 1}} + (2k - 3)I_{k - 1}\bigg) \]

  3. 特例 \[ \int \frac{1}{(x^2 + a^2)^2} \text{d} x = \frac{1}{2a^3} \biggl( \arctan \frac{x}{a} + \frac{ax}{x^2 + a^2}\biggr) + C \]

三角函数有理式积分

  1. 通解:\(t = \tan \frac{x}{2}\)

  2. \(R(\sin x, -\cos x) = -R(\sin x, \cos x)\),令 \(t = \sin x\)

  3. \(R(-\sin x, \cos x) = -R(\sin x, \cos x)\),令 \(t = \cos x\)

  4. \(R(-\sin x, -\cos x) = R(\sin x, \cos x)\),令 \(t = \tan x\)

  5. \(I_n = \int \tan^n x \text{d} x = \frac{\tan^{n - 1} x}{n - 1} - I_{n - 2}\)

  6. \(I_n = \int \sin^n x \text{d} x = -\frac{\sin^{n - 1} \cos x}{n} + \frac{n - 1}{n} I_{n - 2}\)

三角函数代换法

  1. 若积分形式为$ R(x, ) x$,则令 \(x = a\sin t\)

  2. 若积分形式为$ R(x, ) x$,则令 \(x = a\tan t\)

  3. 若积分形式为$ R(x, ) x$,则令 \(x = a\sec t\)

某些根式的换元法

  1. 若积分形式为$ R(x, ) x$,则令 \(u = \sqrt[n]{ax + b}\)

  2. 若积分形式为$ R(x, ) x$,则令 \(u = \sqrt[n]{\frac{ax + b}{cx + d}}\)

  3. 若积分形式为$ R(, ) x$,则令 \(x = u^{n}\)

可积性

  1. 可积则有界

  2. 连续则可积

  3. 有界且有有限个间断点,则可积

定积分的性质

  1. 积分恒等性:设函数 \(f(x)\)\(g(x)\) 在区间 \([a, b]\) 上连续,且恒有 \(f(x) \leq g(x)\)。若 \(\int_{a}^{b} f(x) \text{d} x = \int_{a}^{b} g(x) \text{d} x\),则在 \([a, b]\)\(f(x) \equiv g(x)\)

  2. 积分中值定理:设函数 \(f(x)\) 在区间 \([a, b]\) 上连续,\(g(x)\)\([a, b]\) 上可积且不变号,则至少存在一点 \(\xi \in [a, b]\),使得 \(\int_{a}^{b} f(x) g(x) \text{d} x = f(\xi) \int_{a}^{b} g(x) \text{d} x\)

定积分简化运算

  1. \(n\) 为自然数,则有 \[ I_n = \int_{0}^{\frac{\pi}{2}} \sin^n x \text{d} x = \int_{0}^{\frac{\pi}{2}} \cos^n x \text{d} x \]

    并有递推公式 \[ I_n = \frac{n - 1}{n} I_{n - 2} \]

  2. 对于任意整数 \(k_1\)\(k_2\)\(n\),以下积分都等于积分区间的一半 \[ \int_{\frac{\pi}{2} k_1}^{\frac{\pi}{2} k_2} \sin^2 nx \text{d} x \]

    \[ \int_{\frac{\pi}{2} k_1}^{\frac{\pi}{2} k_2} \cos^2 nx \text{d} x \]

  3. 正交性 以三角函数为例子,函数的集合 \(F = \{1, \cos x, \sin x, \cos 2x, \sin 2x, \cdots \}\),任取其中的两个函数相乘,乘积在区间 \([0, 2\pi]\) 上的积分为零。

广义积分

重要的判定方法

1. 比较判定法

\(0 \leq f(x) \leq g(x)\)\([a, +\infty)\) 上成立:

  • \(\int_a^{+\infty} g(x) \text{d}x\) 收敛,则 \(\int_a^{+\infty} f(x) \text{d}x\) 收敛
  • \(\int_a^{+\infty} f(x) \text{d}x\) 发散,则 \(\int_a^{+\infty} g(x) \text{d}x\) 发散

2. 极限判定法

\(f(x) \geq 0\)\(g(x) > 0\),且 \(\lim\limits_{x \to +\infty} \frac{f(x)}{g(x)} = l\)

  • \(0 < l < +\infty\),则 \(\int_a^{+\infty} f(x) \text{d}x\)\(\int_a^{+\infty} g(x) \text{d}x\) 同敛散
  • \(l = 0\)\(\int_a^{+\infty} g(x) \text{d}x\) 收敛,则 \(\int_a^{+\infty} f(x) \text{d}x\) 收敛
  • \(l = +\infty\)\(\int_a^{+\infty} g(x) \text{d}x\) 发散,则 \(\int_a^{+\infty} f(x) \text{d}x\) 发散

常用的标准广义积分

积分 收敛条件 结果
\(\int_1^{+\infty} \frac{1}{x^p} \text{d}x\) \(p > 1\) \(\frac{1}{p-1}\)
\(\int_0^1 \frac{1}{x^p} \text{d}x\) \(p < 1\) \(\frac{1}{1-p}\)
\(\int_0^{+\infty} e^{-ax} \text{d}x\) \(a > 0\) \(\frac{1}{a}\)
\(\int_{-\infty}^{+\infty} e^{-x^2} \text{d}x\) 总是收敛 \(\sqrt{\pi}\)

特殊的广义积分

  1. 伽马函数 \(\Gamma(s) = \int_{0}^{+\infty} x^{s - 1} \text{e}^{-x} \text{d} x(s > 0)\),递推公式 \(\Gamma(s + 1) = s\Gamma(s)\),对于任意正整数 \(n\)\(\Gamma(n + 1) = n!\)

绝对收敛与条件收敛

  • 绝对收敛:如果 \(\int_a^{+\infty} |f(x)| \text{d}x\) 收敛,则称 \(\int_a^{+\infty} f(x) \text{d}x\) 绝对收敛
  • 条件收敛:如果 \(\int_a^{+\infty} f(x) \text{d}x\) 收敛但 \(\int_a^{+\infty} |f(x)| \text{d}x\) 发散,则称原积分条件收敛

重要公式

  1. 始终存在 \[ \arctan \text{e}^x + \arctan \text{e}^{-x} \equiv \frac{\pi}{2} \]

  2. \(f(x)\) 在区间 \([0, 1]\) 上连续,有如下公式: \[ \int_{0}^{\pi} x f(\sin x) \text{d} x = \frac{\pi}{2} \int_{0}^{\pi} f(\sin x) \text{d} x \]

    证明过程只需要令 \(x = \pi - u\)

  3. 积分的柯西不等式

    \[ \bigg(\int_{a}^{b} f(x) g(x) \text{d} x\bigg)^2 \leq \bigg(\int_{a}^{b} f^2(x) \text{d} x\bigg) \cdot \bigg(\int_{a}^{b} g^2(x) \text{d} x\bigg) \]

  4. \(f(x)\)\(g(x)\) 都是连续函数,如果 \(g(x)\) 是凹函数,则

    \[ g\bigg(\frac{1}{b - a} \int_{a}^{b} f(x) \text{d} x\bigg) \leq \frac{1}{b - a} \int_{a}^{b} g[f(x)] \text{d} x \]

    特别的,令 \(g(x) = x^2\),则有

    \[ \bigg(\int_0^1 f(x) \text{d} x \bigg)^2 \leq \int_0^1 f^2(x) \text{d} x \]

例题讲解

不定积分

  1. 求积分 \[ \int \frac{\text{d} x}{x^4 + 1} \]

    \[ \int \frac{\text{d} x}{x^4 + 1} = \frac{1}{2} \int \frac{1 + \frac{1}{x^2}}{x^2 + \frac{1}{x^2}} \text{d}x - \frac{1}{2} \int \frac{1 - \frac{1}{x^2}}{x^2 + \frac{1}{x^2}} \text{d} x = \frac{1}{2} \int \frac{\text{d}(x - \frac{1}{x})}{(x - \frac{1}{x})^2 + 2} -\frac{1}{2} \int \frac{\text{d} (x + \frac{1}{x})}{(x + \frac{1}{x})^2 - 2} \]

    最终结果为: \[ \frac{1}{2 \sqrt{2}} \arctan \frac{x^2 - 1}{\sqrt{2} x} - \frac{1}{4 \sqrt{2}} \ln \biggl | \frac{x^2 - \sqrt{2} x + 1}{x^2 + \sqrt{2} x + 1} \biggr | + C \]

  2. \(y = f(x)\) 是由方程 \(y^2(x - y) = x^2\) 所确定的隐函数,求 \(\int \frac{1}{y^2} \text{d}x\)

    \(y = ux\),得

    \[ \begin{align*} u^2x^2(x - ux) &= x^2 \\ u^2(x - ux) &= 1 \\ x &= \frac{1}{u^2(1 - u)} \end{align*} \]

    原式:

    \[ \begin{align*} \int \frac{1}{u^2x^2} \text{d}x = \int u^2(1 - u)^2 \frac{3u^2 - 2u}{u^4(1 - u)^2} \text{d}u = \int (3 - \frac{2}{u}) \text{d} u = \frac{3y}{x} - 2 \ln {\frac{y}{x}} + C \end{align*} \]

  3. 反函数的不定积分 设 \(f(x)\) 可导且单调,\(f^{-1}(x)\)\(f(x)\) 的反函数。已知

    \[ \int f(x) \text{d}x = F(x) + C \]

    \(\int f^{-1}(x) \text{d}x\)

    \(y = f(x)\),则 \(x = f^{-1}(y)\),带入原式得到:

    \[ \begin{align*} \int y \text{d} f^{-1}(y) &= F(f^{-1}(y)) + C \\ yf^{-1}(y) - \int f^{-1}(y) \text{d}y &= F(f^{-1}(y)) + C \end{align*} \]

    所以

    \[ \int f^{-1}(x) \text{d}x = xf^{-1}(x) - F(f^{-1}(x)) + C \]

  4. \(f(x) = \begin{cases}1, &x < 0 \\ x + 1, &0 \leq x \leq 1 \\ 2x, &x > 1 \end{cases}\)\(F(x)\)\(f(x)\) 的一个原函数,满足 \(F(0) = 0\),求 \(F(x)\) 的表达式。

    \[ F(x) = \begin{cases} x, &x < 0 \\ \frac{1}{2}x^2 + x, &0 \leq x \leq 1 \\ x^2 + \frac{1}{2}, &x > 1 \end{cases} \]

  5. 设正整数 \(n \geq 2\),求下列积分的递推公式

    (1). \[ \int \tan^n \text{d}x \]

    (2). \[ \int \sin^n \text{d}x \]

    (1). \[ \int \tan^n \text{d}x = \int \frac{1 - \cos^2 x}{\cos^2 x} \tan^{n - 2} \text{d}x = \frac{\tan^{n - 1}}{n - 1} - \int \tan^{n - 2} x \text{d}x \]

    (2). \[ \int \sin^n x \text{d}x = \int - \sin^{n - 1} \text{d} \cos x = \frac{- \sin^{n - 1} \cos x}{n} + \frac{n - 1}{n} \int \sin^{n - 2} x \text{d} x \]

  6. \[ \int \sin^{2} x \cos^{4} x \text{d} x \] 对于形如 \(\int \cos^{m} x \sin^{n} x \text{d} x\) 的积分通常不用万能代换公式化为有理函数积分。积分会退化为对高次有理函数的极其繁琐的部分分式运算。

    \(t = \tan x\),原式:

    \[ \begin{align*} \int \sin^2 x \cos^4 x \text{d}x &= \int \frac{1}{8} \sin^2 2x (\cos 2x + 1) \text{d}x = \frac{1}{16} \int \sin^2 2x \text{d} \sin 2x + \frac{1}{8} \int \sin^2 2x \text{d}x \\ &= \frac{1}{48} \sin^3 2x + \frac{1}{16} x - \frac{1}{64} \sin 4x + C \end{align*} \]

  7. 求不定积分

    \[ \int \frac{1}{\sin^3 x + \cos^3 x} \text{d}x \]

    \[ \begin{align*} \int \frac{1}{\sin^3 x + \cos^3 x} \text{d}x &= \int \frac{1}{(\sin x+ \cos x)(\sin^2 x - \sin x \cos x + \cos^2 x)} \text{d}x \\ &= \int \frac{1}{\sqrt{2}\sin (x + \frac{\pi}{4}) [(\sqrt{2} \cos (x + \frac{\pi}{4}))^2 + \sin x \cos x]} \text{d}x \\ &= \int \frac{1}{\sqrt{2}\sin (x + \frac{\pi}{4}) \bigl[ (\sqrt{2} \cos (x + \frac{\pi}{4}))^2 + \frac{1}{2}[\sin (x + \frac{\pi}{4}) - \cos (x + \frac{\pi}{4})][\sin (x + \frac{\pi}{4}) + \cos (x + \frac{\pi}{4})] \bigr]} \text{d}x \\ &= \int \frac{1}{\sqrt{2}\sin (x + \frac{\pi}{4}) (\sqrt{2} \cos (x + \frac{\pi}{4}))^2 + \frac{1}{2} \bigl[\sin^2 (x + \frac{\pi}{4}) - \cos^2 (x + \frac{\pi}{4}) \bigr]} \text{d}x \\ &= \int \frac{-1}{\sqrt{2}\bigl(1 - \cos^2 (x + \frac{\pi}{4})\bigr) \bigl(\frac{1}{2} + \cos^2 (x + \frac{\pi}{4})\bigr)} \text{d} \cos (x + \frac{\pi}{4}) \end{align*} \]

    \(t = \cos (x + \frac{\pi}{4})\)

    \[ \begin{align*} \int &= \frac{-1}{\sqrt{2}} \int \frac{1}{1 - t^2}\frac{1}{\frac{1}{2} + t^2} \text{d} t \\ &= \frac{-2}{3\sqrt{2}} \int \frac{1}{1 - t^2} + \frac{1}{\frac{1}{2} + t^2} \text{d} t \\ &= \frac{1}{3\sqrt{2}} \ln \biggl|\frac{t - 1}{t + 1}\biggr| - \frac{2}{3} \arctan(\sqrt{2} t) + C \end{align*} \]

  8. 求不定积分

    \[ \int \frac{\text{d} x}{(x + 1)^3 \sqrt{x^2 + 2x}} \]

    \(x + 1 = \frac{1}{t}\)

    \[ \begin{align*} \int \frac{\text{d} x}{(x + 1)^3 \sqrt{x^2 + 2x}} &= \int \frac{\frac{-1}{t^2}}{(\frac{1}{t^3} \sqrt{(\frac{1}{t^2}) - 1})} \text{d} t \\ &= \int \frac{1 - t^2}{\sqrt{1 - t^2}} \text{d} t - \int \frac{1}{\sqrt{1 - t^2}} \text{d} t \\ &= \int \sqrt{1 - t^2} \text{d} t - \arcsin t + C \\ &= \frac{1}{2} t \sqrt{1 - t^2} - \frac{1}{2} \arcsin t + C \\ &= \frac{\sqrt{x^2 + 2x}}{2(x + 1)^2} - \frac{1}{2} \arcsin \frac{1}{x + 1} + C \end{align*} \]

  9. 求不定积分

    \[ \int (1 - \sqrt{x})^{100} \text{d} x \]

    \(u = 1 - \sqrt{x}\),原式:

    \[ \int 2u^{100}(u - 1) \text{d} u = 2\int u^{101} - u^{100} \text{d} u = \frac{1}{51} (1 - \sqrt{x})^{102} - \frac{2}{101} (1 - \sqrt{x})^{101} + C \]

  10. 求不定积分

    \[ \int \frac{\text{d} x}{\sqrt[3]{(x + 1)^2 (x - 1)^4}} \]

    \[ \int = \int \frac{1}{(x^2 - 1)} \sqrt[3]{\frac{x + 1}{x - 1}}\text{d} x \]

    \(t = \sqrt[3]{\frac{x + 1}{x - 1}}\),得 \(x = \frac{2}{t^3 - 1} + 1\)

    \[ \int = \int \frac{-3}{2} \text{d} t = \frac{-3}{2} \sqrt[3]{\frac{x + 1}{x - 1}} + C \]

  11. 求不定积分

    \[ \int \frac{\text{d} x}{(1 + x^4) \sqrt[4]{(1 + x^4)}} \]

    \[ \int \frac{\text{d} x}{(1 + x^4) \sqrt[4]{(1 + x^4)}} = \frac{-1}{4} \int \frac{1}{(1 + \frac{1}{x^4})^{\frac{5}{4}}} \text{d} (1 + \frac{1}{x^4}) = \frac{|x|}{\sqrt[4]{1 + x^4}} + C \]

  12. \[ \int \frac{\text{d} x}{\sqrt[4]{1 + x^4}} \]

    \(x = \frac{1}{t}\),原式为:

    \[ -\frac{1}{4} \int \frac{1}{t^4 \sqrt[4]{t^4 + 1}} \text{d} t^4 \]

    \(u = t^4\),原式为:

    \[ -\frac{1}{4} \int \frac{1}{u \sqrt[4]{u + 1}} \text{d} u \]

    \(v = \sqrt[4]{u + 1}\),原式为:

    \[ \begin{align*} -\int \frac{v^2}{(v^2 - 1)(v^2 + 1)} \text{d} v &= -\frac{1}{2} \int \biggl[\frac{1}{v^2 - 1} + \frac{1}{v^2 + 1}\biggr] \text{d} v \\ &= -\frac{1}{4} \int \biggl[\frac{1}{v - 1} - \frac{1}{v + 1} \biggr] \text{d} v - \frac{1}{2} \arctan v + C \\ &= -\frac{1}{4} \ln \biggl|\frac{v - 1}{v + 1} \biggr| - \frac{1}{2} \arctan v + C \end{align*} \]

  13. \[ \int \frac{1 - \ln x}{(x - \ln x)^2} \text{d} x \]

    \[ \int \frac{x}{x - \ln x} \text{d} x \]

  14. \[ \int \frac{x + 1}{x(1 + x \text{e}^x)} \text{d} x \]

    \[ \int \ln \biggl|\frac{x \text{e}^x}{1 + x \text{e}^x} \biggr| \text{d} x \]

  15. \[ \int_0^1 x (1 - x)^{100} \text{d} x \]

    \[ \int_0^1 x (1 - x)^{100} \text{d} x = -\int_0^1 (1 - x)^{101} \text{d} x + \int_0^1 (1 - x)^{100} \text{d} x = \frac{1}{101} - \frac{1}{102} \]

  16. \[ \int_{-1}^1 \frac{2x^2 + x\cos x}{1 + \sqrt{1 - x^2}} \text{d}x \]

    由奇函数性质,原式:

    \[ \int_{-1}^1 \frac{(2x^2 )(1 - \sqrt{1 - x^2})}{x^2} \text{d} x = 4 \int_0^1(1 - \sqrt{1 - x^2}) \text{d} x = 4 - 4 \int_0^1 \sqrt{1 - x^2} \text{d} x = 4 - \pi \]

  17. 计算 \[ I = \int_0^1 \text{d} x \int_{x - x^3}^{1} (3x^2 - 1) \text{e}^{y^2} \text{d} y \]

    \[ \int_0^1 (3x^2 - 1) \text{d} x \int_{x - x^3}^{1} \text{e}^{y^2} \text{d} y \]

    \(F(x) = \int_{x - x^3}^{1} \text{e}^{y^2} \text{d} y\)

    \[ \int_0^1 (3x^2 - 1) F(x) \text{d} x = \int_0^1 F(x) \text{d} (x^3 - x) = \frac{1}{2}\int_0^1 \text{e}^{(x - x^3)^2}\text{d} (x^3 - x)^2 = 0 \]

  18. \(f(x)\) 连续,对任何 \(r > 0\) 积分 \(\int_r^{+\infty} \frac{f(x)}{x} \text{d} x\) 都收敛,\(f(0) = L\)。证明: \[ \int_0^{+\infty} \frac{f(\alpha x) - f(\beta x)}{x} \text{d} x = L \ln \frac{\beta}{\alpha} \]

    其中,\(\alpha\)\(\beta > 0\)

    \[ \int_r^{+\infty} \frac{f(\alpha x) - f(\beta x)}{x} \text{d} x = \int_{\alpha r}^{\beta r} \frac{f(u)}{u} \text{d} u = f(\xi) \int_{\alpha r}^{\beta r} \frac{1}{u} \text{d} u = f(\xi) \ln \frac{\beta}{\alpha} \]

    其中,\(\alpha r < \xi < \beta r\),当 \(r \to 0\) 时,得到 \(L \ln \frac{\beta}{\alpha}\)

  19. 设函数

    \[ f(x) = \begin{cases} x^2 \sin \frac{1}{x^2}, &x \neq 0 \\ 0, &x = 0 \end{cases} \]

    证明 \(f(x)\) 在闭区间 \([-1, 1]\) 上可导,\(f'(x)\) 在区间上不可积。

    \[ f'(x) = 2x \sin \frac{1}{x^2} - 2 \frac{1}{x} \cos \frac{1}{x^2}, x \neq 0 \]

    \(x = 0\) 时,有导数定义得

    \[ \lim_{x \to 0} \frac{f(x)}{x} = 0 \]

    故函数 \(f'(x)\) 在区间上存在。

    考虑 \(f'(x)\)\(x = 0\) 处的连续性。

    \[ \lim_{x \to 0^+} 2x \sin \frac{1}{x^2} - 2 \frac{1}{x} \cos \frac{1}{x^2} \]

    显然极限不存在,所以 \(f'(x)\) 在点 \(x = 0\) 处不连续,故在区间 \([-1, 1]\) 上不可积分。

  20. \(s > 0\),求

    \[ I_n = \int_0^{+\infty} \text{e}^{-sx} x^n \text{d} x(n = 1, 2, 3, \cdots) \]

    \[ I_n = \frac{1}{s^{n + 1}}\int_0^{+\infty} \text{e}^{-sx} (sx)^n \text{d} (sx) = \frac{1}{s^{n + 1}} \cdot n! \]

  21. \[ \lim_{n \to \infty} \sum_{k = 1}^{n - 1} \biggl(1 + \frac{k}{n} \biggr) \sin \frac{k\pi}{n^2} \]

    \[ \begin{align*} \lim_{n \to \infty} \sum_{k = 1}^{n - 1} \biggl(1 + \frac{k}{n} \biggr) \sin \frac{k\pi}{n^2} = \lim_{n \to \infty} \sum_{k = 1}^{n - 1} \biggl(1 + \frac{k}{n} \biggr) \biggl(\frac{k\pi}{n^2} - \frac{\sin \xi}{2} \biggl(\frac{k\pi}{n^2} \biggr)^2 \biggr) = \frac{5\pi}{6} \end{align*} \]

  22. \[ \lim_{n \to \infty} \sum_{j = 1}^{n^2} \frac{n}{n^2 + j^2} \]

    \[ S_n = \sum_{j = 1}^{n^2} \frac{n}{n^2 + j^2} = \sum_{j = 1}^{n^2} \frac{1}{1 + (\frac{j}{n})^2} \frac{1}{n} \]

    显然有

    \[ \int_{\frac{j}{n}}^{\frac{j + 1}{n}} \frac{\text{d} x}{1 + x^2} < \frac{1}{1 + (\frac{j}{n})^2} \frac{1}{n} < \int_{\frac{j - 1}{n}}^{\frac{j}{n}} \frac{\text{d} x}{1 + x^2} \]

    所以

    \[ \lim_{n \to \infty} S_n = \frac{\pi}{2} \]

  23. \[ A_n = \sum_{j = 1}^{n} \frac{n}{n^2 + j^2} \]

    \[ \lim_{n \to \infty} n\biggl(\frac{\pi}{4} - A_n \biggr) \]

    \(f(x) = \frac{1}{1 + x^2}\)\(J_n = n \bigl(\frac{\pi}{4} - A_n \bigr)\)\(x_i = \frac{i}{n}\)

    \[ \begin{aligned} \frac{\pi}{4} &= \sum_{j = 1}^{n} \int_{x_{i - 1}}^{x_i} f(x) \text{d}x \\ A_n &= \sum_{j = 1}^{n} \int_{x_{i - 1}}^{x_i} f(x_i) \text{d}x \\ \lim_{n \to \infty} &n \sum_{j = 1}^{n} \int_{x_{i - 1}}^{x_i} \bigl(f(x) - f(x_i)\bigr) \text{d} x \\ \lim_{n \to \infty} &n \sum_{j = 1}^{n} \int_{x_{i - 1}}^{x_i} f'[\xi_i(x)] (x - x_i) \text{d} x, \quad \xi_i(x) \in (x_i, x) \\ \lim_{n \to \infty} &n \sum_{j = 1}^{n} f'(\eta_i) \int_{x_{i - 1}}^{x_i} (x - x_i) \text{d} x = \frac{-f'(\eta_i)}{2} \cdot \frac{1}{n} \\ \lim_{n \to \infty} & \frac{-1}{2} \sum_{j = 1}^{n} f'(\eta_i) \frac{1}{n} = \frac{-1}{2} \cdot \int_0^1 f'(x) \text{d} x = \frac{1}{4} \end{aligned} \]

  24. 证明

    \[ \int_0^{\frac{\pi}{2}} \sqrt{a^2 \sin^2 \theta + b^2 \cos^2 \theta} \text{d} \theta = a^2 b^2 \int_0^{\frac{\pi}{2}} \frac{1}{(\sqrt{a^2 \sin^2 \theta + b^2 \cos^2 \theta})^3} \text{d} \theta \]

    \(a\)\(b > 0\)

    \[ \begin{aligned} \int_0^{\frac{\pi}{2}} \sqrt{a^2 \sin^2 \theta + b^2 \cos^2 \theta} \text{d} \theta &= \int_0^{\frac{\pi}{2}} \sin \theta \sqrt{a^2 + b^2 \cot^2 \theta} \text{d} \theta \\ &= -\int_0^{\frac{\pi}{2}} \frac{\sqrt{a^2 + b^2 \cot^2 \theta}}{(\frac{\sin^2 \theta + \cos^2 \theta}{\sin^2 \theta})^{\frac{3}{2}}} \text{d} \cot \theta \\ &= \int_0^{+\infty} \frac{\sqrt{a^2 + b^2 u^2}}{(1 + u^2)^{\frac{3}{2}}} \text{d} u \end{aligned} \]

    \[ \begin{aligned} a^2 b^2 \int_0^{\frac{\pi}{2}} \frac{1}{(\sqrt{a^2 \sin^2 \theta + b^2 \cos^2 \theta})^3} \text{d} \theta &= a^2 b^2 \int_0^{\frac{\pi}{2}} \biggl(\sqrt{\frac{\sin^2 \theta + \cos^2 \theta}{a^2 \sin^2 \theta + b^2 \cos^2 \theta}}\biggr)^3 \text{d} \theta \\ &= a^2 b^2 \int_0^{\frac{\pi}{2}} \frac{\bigl(\sqrt{\tan^2 \theta + 1}\bigr)^3}{\bigl(\sqrt{a^2 \tan^2 \theta + b^2}\bigr)^3} \text{d} \theta \\ &= a^2 b^2 \int_0^{\frac{\pi}{2}} \frac{\sqrt{\tan^2 \theta + 1}}{\bigl(\sqrt{a^2 \tan^2 \theta + b^2}\bigr)^3} \text{d} \tan \theta \\ &= \int_0^{+\infty} \frac{\sqrt{a^2 + b^2 u^2}}{(1 + u^2)^{\frac{3}{2}}} \text{d} u \end{aligned} \]

  25. 证明

    \[ \int_0^{2\pi} f(a \cos x + b \sin x) \text{d} x = 2 \int_0^{\pi} f(\sqrt{a^2 + b^2} \cos x) \text{d} x \]

    其中 \(f(x)\) 连续,\(a^2 + b^2 \neq 0\)

    \[ \begin{aligned} \int_0^{2\pi} f(a \cos x + b \sin x) \text{d} x &= \int_0^{2\pi} f(\sqrt{a^2 + b^2} \cos (x - \theta)) \text{d} x \\ &= \int_{-\pi}^{\pi} f(\sqrt{a^2 + b^2} \cos x) \text{d} x \\ &= 2 \int_0^{\pi} f(\sqrt{a^2 + b^2} \cos x) \text{d} x \end{aligned} \]

  26. 已知 \(f(x)\) 连续且 \(f(x) = \sin x - \int_0^{x} (x - t) f(t) \text{d} t\),求 \(f(x)\) 的表达式。

    等式两端对 \(x\) 求导:

    \[ \begin{aligned} f'(x) &= \cos x - x f(x) - \int_0^{x} f(t) \text{d} t + x f(x) \\ f''(x) &= -\sin x - f(x) \end{aligned} \]

    上述微分方程的通解是:

    \[ f(x) = C_1 \cos x + C_2 \sin x + \frac{x \cos x}{2} \]

    带入 \(f(0) = 0\)\(f'(0) = 1\),得

    \[ f(x) = \frac{1}{2} \sin x + \frac{x \cos x}{2} \]

  27. 设可微函数 \(y = f(x)\) 满足方程

    \[ \int_0^{x} f(t) \text{d} t = x + \int_0^{x} t f(x - t) \text{d} t \]

    \(f(x)\)

    \(u = x - t\)

    \[ \begin{aligned} \int_0^{x} f(t) \text{d} t &= x + \int_0^{x} (x - u) f(u) \text{d} u \\ f(x) &= 1 + \int_0^{x} f(u) \text{d}u + x f(x) - x f(x) \\ f'(x) &= f(x) \end{aligned} \]

    所以 \(f(x) = \text{e}^x\)

  28. 设函数 \(y = y(x)\) 由方程

    \[ x = \int_1^{y - x} \sin^2 \biggl(\frac{\pi t}{4}\biggr) \text{d} t \]

    所确定,求 \(y'(0)\)

    \(x = 0\)

    \[ 0 = \int_1^{y(0)} \sin^2 \biggl(\frac{\pi t}{4}\biggr) \text{d} t \]

    所以,\(y(0) = 1\)

    \[ 1 = (y'(0) - 1) \sin^2 \biggl(\frac{\pi y(0)}{4}\biggr) \]

    所以,\(y'(0) = 3\)

  29. \(f(x)\) 是非负的连续函数,且

    \[ f(x) \int_0^x f(x - t) \text{d} t = \sin^4 x \]

    \(f(x)\)\([0, \pi]\) 上的均值。

    \(u = x - t\)

    \[ \begin{aligned} f(x) \int_0^x f(u) \text{d} u &= \sin^4 x \\ \int_0^{\pi} f(x) \int_0^x f(u) \text{d} u \text{d} x &= \int_0^{\pi} \sin^4 x \text{d} x = \frac{3}{8} \pi \\ \int_0^{\pi} f(x) F(x) \text{d} x &= \frac{3}{8} \pi \\ \int_0^{\pi} F(x) \text{d} F(x) &= \frac{3}{8} \pi \\ F^2(\pi) - \int_0^{\pi} F(x) \text{d} F(x) &= \frac{3}{8} \pi \\ F^2(\pi) &= \frac{3}{4} \pi \\ F(\pi) &= \frac{\sqrt{3 \pi}}{2} \end{aligned} \]

    所以均值 \(A = \frac{\sqrt{3 \pi}}{2 \pi}\)

  30. \(f(x)\) 可积,对于任意的 \(x\)\(a\) 满足

    \[ \frac{1}{2a} \int_{x - a}^{x + a} f(t) \text{d} t = f(x)(a \neq 0) \]

    证明 \(f(x)\) 是线性函数。

    \[ \begin{aligned} \int_{x - a}^{x + a} f(t) \text{d} t &= 2a f(x) \\ f(x + a) + f(x - a) &= 2f(x) \\ f'(x + a) - f'(x - a) &= 0 \\ f'(2x) &= f'(0) \end{aligned} \]

    所以,\(f'(x) \equiv C\),其中 \(C\) 是常数。又题目知,\(f(x)\) 连续,再由题设等式知,\(f(x)\) 可导,故 \(f(x)\) 是线性函数。

  31.  设函数 \(\varphi(x)\)\([0, 1]\) 上连续,在 \((0, 1]\) 内可导,并有 \(\int_0^1 \varphi(tx) \text{d} t = a \varphi(x)\),其中 \(a\) 为常数。试求 \(\varphi(x)\)

    \(u = tx\)

    \[ \begin{aligned} \int_0^x \varphi(u) \text{d} \frac{u}{x} &= a \varphi(x) \\ \varphi(x) &= a \varphi(x) + a x \varphi'(x) \end{aligned} \]

    \[ \varphi(x) = \begin{cases} 0, &a = 0 \\ Cx^{\frac{1 - a}{a}}, &a \neq 0, C \in R \end{cases} \]

  32. 设函数 \(f(x)\) 连续,\(g(x) = \int_0^1 f(xt) \text{d} t\),且 \(\lim\limits_{x \to 0} \frac{f(x)}{x} = A\)\(A\) 是常数,求 \(g'(x)\) 并讨论 \(g'(x)\)\(x = 0\) 处的连续性。

    \(u = xt\)

    \[ \begin{aligned} g(x) &= \frac{1}{x} \int_0^x f(u) \text{d} u \\ g'(x) &= \frac{f(x) x - \int_0^x f(u) \text{d} u}{x^2}, x \neq 0 \end{aligned} \]

    \[ \begin{aligned} \lim_{x \to 0} g'(x) &= \lim_{x \to 0} \biggl(\frac{f(x) x - \int_0^x f(u) \text{d} u}{x^2} \biggr) \\ &= A - \lim_{x \to 0} \biggl(\frac{\int_0^x f(u) \text{d} u}{x^2}\biggr) \\ &= \frac{A}{2} \end{aligned} \]

  33. \(f(x)\) 在区间 \([a, b]\) 上连续,证明下列结论:

    (1). \(f(x)\) 为常数的充要条件为对任何 \(x \in (a, b)\) 恒有 \(\frac{1}{x - a} \int_a^x f(t) \text{d} t = \frac{1}{b - a} \int_a^b f(x) \text{d} x\)

    (2). \(f(x)\) 为常数的充要条件为对任何 \(x \in (a, b)\) 恒有 \(\frac{1}{x - a} \int_a^x f(t) \text{d} t = \frac{1}{b - x} \int_x^b f(t) \text{d} t\)

    可以尝试用从面积来解释

  34. \(x = \int_0^y \frac{\text{d} t}{\sqrt{1 + 4t^2}}\),证明:\(\frac{\text{d}^3 y}{\text{d} x^3} - 4 \frac{\text{d} y}{\text{d} x} = 0\)

    \[ \begin{aligned} \text{d} x &= \frac{\text{d} y}{\sqrt{1 + 4y^2}} \\ \frac{\text{d} y}{\text{d} x} &= \sqrt{1 + 4y^2} \\ \frac{\text{d}^2 y}{\text{d} x^2} &= \frac{4yy'}{\sqrt{1 + 4y^2}} = 4y \\ \frac{\text{d}^3 y}{\text{d} x^3} &= 4 y' \end{aligned} \]

  35. 求摆线 \(L: x = a(t - \sin t), y = a(1 - \cos t)(0 \leq t \leq 2 \pi)\)\(x\) 轴围成的图形绕 \(y\) 轴旋转所形成的旋转体体积 \(V_y\)

    由柱壳法,设 \(y = f(x)(0 \leq x \leq 2\pi a)\),体积微元 \(\text{d} V_y = 2\pi xy \text{d} x\),则体积可表示为:

    \[ V_y = 2\pi \int_0^{2\pi a} xy \text{d} x = 2\pi a^3 \int_0^{2\pi} (t - \sin t)(1 - \cos t)^2 \text{d} t = 6\pi^3 a^3 \]

  36. 设直线 \(l: x + y = 1\),曲线 \(S: \sqrt{x} + \sqrt{y} = 1\),求由 \(l\)\(S\) 所围成的平面图形绕 \(l\) 旋转所形成的旋转体体积 \(V\)

    在曲线上取一点 \(P(x, y)\),该点到直线的距离是 \(\rho = \frac{|x + y - 1|}{\sqrt{2}}\),以 \(\rho\) 为长度,旋转轴上 \(\text{d} l\) 为宽度作矩形,取体积微元 \(\text{d} V = \pi \rho^2 \text{d} l\),其中 \(\text{d} l = \sqrt{2} \text{d} x\),所以,体积为:

    \[ V = \sqrt{2} \int_0^1 \pi \frac{[x + (1 - \sqrt{x})^2 - 1]^2}{2} \text{d} x = \frac{\sqrt{2}}{15} \pi \]

  37. 已知空间中的点 \(A(1, 0, 0)\)\(B(0, 1, 1)\),直线 \(AB\)\(z\) 轴的旋转面为 \(S\),求 \(S\) 与两平面 \(z = 0\)\(z = 1\) 所围成的立体的体积 \(V\)

    在直线上取一点 \(P(x, y, z)\),该点到 \(z\) 轴的距离是 \(\rho = \sqrt{x^2 + y^2}\),以 \(\rho\) 为长度,旋转轴上 \(\text{d} z\) 为宽度作矩形,取体积微元 \(\text{d} V = \pi \rho^2 \text{d} z\),直线 \(AB\) 的方程为:

    \[ \begin{cases} y = z \\ x = 1 - z \end{cases} \]

    \[ V = \int_0^1 \pi (1 - 2z + 2z^2) \text{d} z = \frac{2\pi}{3} \]

  38. 求曲线 \(y = x(x - 1)(x - 2)\)\(x\) 轴所围平面区域绕 \(y\) 轴旋转所成的旋转体体积 \(V_y\)

    用柱壳法

    \[ \begin{aligned} 2\pi \int_0^2 x |y| \text{d} x &= 2\pi \int_0^1 x^2(x - 1)(x - 2) \text{d} x - 2\pi \int_1^2 x^2(x - 1)(x - 2) \text{d} x \\ &= \pi \end{aligned} \]

  39. \(f(x)\)\([a, b]\) 上有连续的导数,\(M\)\(m\) 分别是 \(f(x)\) 的最大值与最小值。证明:\(\int_a^b |f'(x)| \text{d} x \geq M - m\);等号成立当且仅当 \(f(x)\)\([a ,b]\) 上的单调函数。

  40. 试确定抛物线 \(4ay = x^2(a > 0)\) 的一条法线弦(法线穿过抛物线构成的弦)的位置,使得这条弦截该抛物线所成的弓形有最小面积。

    该抛物线的参数方程为 \(x = 2at\)\(y = at^2(-\infty < t < +\infty)\),设法线弦交抛物线的交点分别为 \(Q(2av, av^2)\)\(P(2au, au^2)\)。 则法线弦的直线方程为:\(y = \frac{1}{2}(u + v)x - auv\)。则弓形面积

    \[ \begin{aligned} S &= \int_{2av}^{2au} \frac{1}{2}(u + v)x - auv - \frac{1}{4a} x^2 \text{d} x \\ &= \frac{1}{4}(u + v)(4a^2u^2 - 4a^2v^2) - auv(2au - 2av) - \frac{1}{4a}(4a^2u^2 - 4a^2v^2) \end{aligned} \]

  41. 半径为 \(r\) 的初始圆与 \(x\) 轴相切于原点,它在 \(x\) 轴上向右滚动一周。初始圆上的切点在滚动过程中的轨迹称为旋轮线。它的参数方程为 \(L: x = r(\theta - \sin \theta)\)\(y = r(1 - \cos \theta)\)\(0 \leq \theta \leq 2\pi\),其中 \(\theta\) 是滚动圆的旋转角。求旋轮线一拱的弧长 \(l\) 以及它与 \(x\) 轴所围图形的面积 \(A\)

    \[ \begin{aligned} l &= \int_0^{2\pi} \sqrt{\biggl(\frac{\text{d} x}{\text{d} \theta}\biggr)^2 + \biggl(\frac{\text{d} y}{\text{d} \theta}\biggr)^2} \text{d} \theta \\ &= \int_0^{2\pi} 2r \sqrt{1 - \cos \theta} \text{d} \theta \\ &= 8r \end{aligned} \]

    \[ \begin{aligned} A &= \int_0^{2\pi r} y(x) \text{d} x \\ &= \int_0^{2\pi} r(1 - \cos \theta) \text{d} r(\theta - \sin \theta) \\ &= \int_0^{2\pi} r^2 (1 - \cos \theta)^2 \text{d} \theta \\ &= 3\pi r^2 \end{aligned} \]

  42. \(\Gamma\) 是单位圆周在第一象限的一段圆弧,\(A\) 是位于 \(\Gamma\) 下方和 \(x\) 轴上方区域的面积,\(B\) 是位于 \(y\) 轴右侧和 \(\Gamma\) 左侧之间区域的面积。证明:\(A + B\) 只与弧长 \(|\Gamma|\) 有关,与 \(\Gamma\) 在圆周上的位置无关。

    \(\frac{\pi}{2} > \beta > \alpha > 0\) 所代表的的圆弧是 \(\Gamma\),单位圆的参数方程是 \(x = \cos \theta\)\(y = \sin \theta\),设 \(\Gamma\) 的上下端点的坐标分别为 \(P\)\(Q\),坐标分别为 \((\cos \beta, \sin \beta)\)\((\cos \alpha, \sin \alpha)\)

    先求出 \(|\Gamma|\)

    \[ \begin{aligned} |\Gamma| &= \int_{\alpha}^{\beta} \sqrt{\biggl(\frac{\text{d} x}{\text{d} \theta}\biggr)^2 + \biggl(\frac{\text{d} y}{\text{d} \theta}\biggr)^2} \text{d} \theta \\ &= \beta - \alpha \end{aligned} \]

    再讨论 \(A + B\)

    \[ \begin{aligned} A &= \int_{\cos \beta}^{\cos \alpha} y(x) \text{d} x \\ B &= \int_{\sin \alpha}^{\sin \beta} x(y) \text{d} y \\ A + B &= \int_{\alpha}^{\beta} \sqrt{1 - \cos^2 \theta} \sin \theta \text{d} \theta + \int_{\alpha}^{\beta} \sqrt{1 - \sin^2 \theta} \cos \theta \text{d} \theta \\ &= \beta - \alpha \end{aligned} \]

  43. \(C\) 是椭圆,周长为 \(l\)。自 \(C\) 上一点 \(O\) 向外地做它的法线,并沿法线截取线段 \(OO' = h\)。当点 \(O\) 沿 \(C\) 绕行一周后,点 \(O'\) 的轨迹构成曲线 \(C'\),证明:

    (1). 曲线 \(C'\) 的长度为 \(l' = l + 2\pi h\)

    (2). \(C\)\(C'\) 所围成的面积是 \(lh + \pi h^2\)

  44. 求从原点到曲线 \(y^2 = x^3\) 上一点的弧长,已知这一点处的切线与 \(x\)\(45^{\circ}\)

    曲线上任意一点的斜率为 \(\frac{3x^2}{2y}\),已知曲线上的点与 \(x\) 轴成 \(45^{\circ}\),所以该点 \(\frac{3x^2}{2y} = \pm 1\)

    \[ \begin{cases} \frac{3x^2}{2y} = \pm 1 \\ y^2 = x^3 \end{cases} \]

    解得 \(x = \frac{4}{9}\)\(y = \pm \frac{8}{27}\),由曲线关于 \(x\) 轴对称,所以从原点到这两点的弧长相等,以 \((\frac{4}{9}, \frac{8}{27})\) 为例,弧长

    \[ \begin{aligned} l &= \int_0^{\frac{4}{9}} \sqrt{(y')^2 + 1} \text{d} x \\ &= \frac{2}{3} \cdot \frac{4}{9} \biggl[\biggl(\frac{9}{4} \cdot \frac{4}{9} + 1\biggr)^{\frac{3}{2}} - \biggl(\frac{9}{4} \cdot 0 + 1\biggr)^{\frac{3}{2}}\biggr] \\ &= \frac{8}{27} (2\sqrt{2} - 1) \end{aligned} \]

  45. 证明椭圆 \(L_1: x = a\cos t\)\(y = b \sin t\) 的周长,\(0 \leq t \leq 2\pi\)\(a > b > 0\) 等于正弦曲线 \(L_2: y = c \sin \frac{x}{b}\) 的一波之长,\(0 \leq x \leq 2\pi b\),其中 \(c = \sqrt{a^2 - b^2}\)

    正弦曲线的一波之长为:

    \[ \begin{aligned} l &= \int_0^{2\pi b} \sqrt{(y')^2 + 1} \text{d} x \\ &= \int_0^{2\pi b} \sqrt{(\frac{c}{b} \cos \frac{x}{b})^2 + 1} \text{d} x \\ &= \int_0^{2\pi} \sqrt{c^2 \cos^2 u + b^2} \text{d} u \\ &= \int_0^{2\pi} \sqrt{a^2 \cos^2 u + b^2 \sin^2 u} \text{d} u \\ &= \int_0^{2\pi} \sqrt{a^2 \sin^2 t + b^2 \cos^2 t} \text{d} t \end{aligned} \]

  46. 在平面上有一条从点 \((a, 0)\) 向右的射线,线密度为 \(\rho\)。在点 \((0, h)\) 处,其中 \(h > 0\),有一质量为 \(m\) 的质点,求射线对该质点的引力。

    射线从 \((a, 0)\) 射向 \(x\) 轴正无穷,对射线上每个点 \((x, 0)\),取微元,得到线质量为 \(\rho \text{d} x\),设引力为 \(\mathbf{F} = (F_x, F_y)\)

    \[ \begin{aligned} F_x &= \int_a^{+\infty} \frac{Gm\rho \text{d} x}{x^2 + h^2} \cdot \frac{x}{\sqrt{x^2 + h^2}} \\ &= Gm\rho\int_a^{+\infty} \frac{\text{d} (x^2 + h^2)}{2(x^2 + h^2)^{\frac{3}{2}}} \\ &= \frac{Gm\rho}{\sqrt{a^2 + h^2}} \\ F_y &= -\int_a^{+\infty} \frac{Gm\rho \text{d} x}{x^2 + h^2} \cdot \frac{h}{\sqrt{x^2 + h^2}} \\ &= -Gmh\rho \int_a^{+\infty} \frac{\text{d} x}{(x^2 + h^2)^{\frac{3}{2}}} \\ &= \frac{Gm\rho}{h} \biggl(\sin\biggl(\arctan \frac{a}{h}\biggr) - 1\biggr) \end{aligned} \]

  47. 已知两条均匀的竿子,每条质量为 \(m\),长度为 \(2a\),相互平行,相距为 \(b\),并且其中心连线与它们垂直。试计算相互引力,并考虑 \(a\) 为零的情形。

  48. 宽度为 \(R\) 的河面上任一点的流速与该点到两岸距离的乘积成正比。已知河道中心线处水的流速为 \(v_0\)。求河道上河水的平均流速。

    比例系数 \(\eta = \frac{4v_0}{R^2}\),则河面上距离河道 \(r\) 的一点的速度为 \(\eta \cdot (R - r) \cdot r\),河面上河水的平均流速为:

    \[ \bar{v} = \frac{\int_0^R \eta \cdot (R - r) \cdot r \text{d} r}{R} = \frac{2}{3} v_0 \]

  49. \(f(x)\)\([0, 1]\) 上可导,\(f(0) = 0\),且当 \(x \in (0, 1)\) 时,\(0 < f'(x) < 1\)。证明:当 \(a \in (0, 1)\) 时,\((\int_0^a f(x) \text{d} x)^2 > \int_0^a f^3(x) \text{d} x\)

    \(F(x) = (\int_0^x f(t) \text{d} t)^2 - \int_0^x f^3(t) \text{d} t\)\(F'(x) = 2 f(x) \int_0^x f(t) \text{d} t - f^3(x) = 2 f(x) [\int_0^x f(t) \text{d} t - \frac{1}{2}f^2(x)] = 2 f(x) g(x)\)\(g'(x) = f(x) - f'(x)f(x) > 0\),所以 \(g(x) > g(0) = 0\),所以 \(F'(x) = 2 f(x) g(x) > 2 f(0) g(0) = 0\),所以 \(F(x) > F(0) = 0\)。得证。


不定积分与定积分
https://ddccffq.github.io/2025/08/01/数学竞赛/不定积分与定积分/
作者
ddccffq
发布于
2025年8月1日
许可协议