函数、极限、连续

必备知识点

  1. \[ \lim_{n \to \infty} \sqrt[n]{a_1^n + a_2^n \dots + a_m^n} = \max_{1 \leq i \leq m}\{a_i\} \]

    这个公式用夹逼定理证明,证明如下:记 \(\max\limits_{1 \leq i \leq m} = a\),则 \[ a = \sqrt[n]{a^n} \leq \sqrt[n]{a_1^n + a_2^n \dots + a_m^n} \leq \sqrt[n]{m \times a^n} = a \sqrt[n]{m} \]

    \(\lim\limits_{n \to \infty} \sqrt[n]{m} = 1\),所有根号下变量要求 \(\geq 0\)

  2. 拉格朗日中值定理 如果函数 \(f(x)\) 满足以下条件:

    1. 在闭区间 \([a, b]\) 上连续
    2. 在开区间 \((a, b)\) 上可导

    那么,至少存在一点 \(\xi \in (a, b)\),使得: \[ f'(\xi) = \frac{f(b) - f(a)}{b - a} \]

  3. 立方和公式与立方差公式 \[ \begin{align*} a^3 + b^3 &= (a + b)(a^2 - ab + b^2) \\ a^3 - b^3 &= (a - b)(a^2 + ab + b^2) \end{align*} \]

    更进一步, \[ \begin{align*} a^n + b^n &= (a + b)(a^{n - 1} - a^{n - 2}b + a^{n - 3}b^2 - \cdots + b^{n - 1}), n = 2k - 1 \\ a^n - b^n &= (a - b)(a^{n - 1} + a^{n - 2}b + a^{n - 3}b^2 + \cdots + b^{n - 1}) \end{align*} \]

  4. 几个常用函数的麦克劳林公式 \((n = 0, 1, \cdots)\) \[ \begin{align*} \text{e}^x &= 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots + \frac{x^n}{n!} + o(x^n) \\ \sin x &= x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots + (-1)^{n } \frac{x^{2n + 1}}{(2n + 1)!} + o(x^{2n + 2}) \\ \cos x &= 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots + (-1)^n \frac{x^{2n}}{(2n)!} + o(x^{2n + 1}) \\ \ln (1 + x) &= x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots + (-1)^{n} \frac{x^{n + 1}}{n + 1} + o(x^{n + 1}) \\ (1 + x)^{\alpha} &= 1 + \alpha x + \frac{\alpha(\alpha - 1)}{2!} x^2 + \cdots + \frac{\alpha(\alpha - 1) \cdots (\alpha - n + 1)}{n!} x^n + o(x^n) \\ \frac{1}{1- x} &= 1 + x + x^2 + \cdots + x^n + o(x^n) \\ \frac{1}{1 + x} &= 1 - x + x^2 - \cdots + (-1)^{n} x^n + o(x^n) \\ \arctan x &= x - \frac{1}{3} x^3 + \frac{1}{5} x^5 - \cdots + (-1)^n \frac{1}{2n + 1} x^{2n + 1} + o(x^{2n + 1}) \end{align*} \]

  5. 若函数 \(f(x)\)\(g(x)\) 在区间 \(I\)上连续,对于 \(x \in I\),构造函数 \(M(x) = \max\{f(x), g(x)\} = \frac{f(x) + g(x) + |f(x) - g(x)|}{2}\)\(m(x) = \min\{f(x), g(x)\} =\frac{f(x) + g(x) - |f(x) - g(x)|}{2}\)

  6. 双侧极限存在的充要条件是两个单侧极限存在且相等。

  7. 常用的等价无穷小

    \[ \begin{align*} \sin x &\sim x \\ \tan x &\sim x \\ 1 - \cos x &\sim \frac{x^2}{2} \\ \arcsin x &\sim x \\ \arctan x &\sim x \\ \text{e}^x - 1 &\sim x \\ \ln(x + 1) &\sim x \\ (1 + x)^{\lambda} - 1 &\sim \lambda x \end{align*} \]

  8. 无穷小 \(o(x^n)\) 的意义是最低次数大于 \(n\)

  9. 洛必达法则要求可导,对于无穷比无穷型,无需要求分子趋于无穷。

  10. 归结原则:对于任何趋于某一状态 \(a\) 的数列 \(\{x_n\}\),都有 \(\lim\limits_{n \to \infty} f(x_n) = A\),则 \(\lim\limits_{x \to a} f(x) = A\)

  11. \(\lim\limits_{n \to \infty} x_n = A\) 的充要条件是对于任何 \(\{x_n\}\) 的子数列 \(\{x_{k_n}\}\) 都有 \(\lim\limits_{n \to \infty} x_{k_{n}} = A\)

  12. Stolz 定理:设数列 \(\{b_n\}\) 单调增加且 \(\lim\limits_{n \to \infty} b_n = +\infty\)。如果 \(\lim\limits_{n \to \infty} \frac{a_n - a_{n - 1}}{b_n - b_{n - 1}}\) 存在或为 \(\pm \infty\),则其结果等于 \(\lim\limits_{n \to \infty} \frac{a_n}{b_n}\)

  13. \(\lim\limits_{x \to 0^{+}} x^x = 1\)

  14. 曲线的斜渐近线:\(\lim\limits_{x \to \pm \infty} \frac{f(x)}{x} = k\)\(\lim\limits_{x \to \pm \infty} (f(x) - kx) = b\)

  15. 一元函数连续:\(\lim\limits_{x \to x_0} f(x) = f(x_0)\)

  16. 如果 \(f(x)\) 在点 \(x_0\) 处不连续,则称 \(x_0\)\(f(x)\) 的一个间断点。

例题讲解

  1. \[ x_n=\prod_{k = 1}^n\Bigl(1 + \frac1{2^{2^k}}\Bigr) =(1 + \frac12)(1 + \frac1{2^2})(1 + \frac1{2^4})\cdots(1 + \frac1{2^{2^n}}) \]

    \(\lim\limits_{n \to \infty}x_n\)

    构造望远镜乘积 \[ \frac{1}{2^{2^n}} + 1 = \frac{(\frac{1}{2^{2n}} + 1)(\frac{1}{2^{2n}} - 1)}{\frac{1}{2^{2n}} - 1}= \frac{\frac{1}{2^{2^{n + 1}}} - 1}{\frac{1}{2^{2^n}} - 1} \]

    替换所有元素的形式,最终得到: \[ \lim_{n \to \infty}x_n = \lim_{n \to \infty} \frac{\frac{1}{2^{2^{n + 1}}} - 1}{\frac{1}{2^{2^0}} - 1} = 2 \]

  2. \[ \lim_{n \to \infty} \sin(\pi \sqrt{n^2 + 1}) \]

    变形: \[ \lim_{n \to \infty} \sin(\pi \sqrt{n^2 + 1}) = (-1)^n\lim_{n \to \infty} \sin(\pi \sqrt{1 + n^2} -n\pi) = (-1)^n \lim_{n \to \infty} \sin(\frac{\pi}{\sqrt{1 + n^2} + n}) = 0 \]

  3. \[ \lim_{n \to \infty} \frac{(1 + 1/n)^{n^{2}}}{\text{e}^n} \]

    变形: \[ \text{e}^{\ln \lim\limits_{n \to \infty} \frac{(1 + 1/n)^{n^{2}}}{\text{e}^n}} = \text{e}^{\lim\limits_{n \to \infty} n^2 \ln (1 + \frac{1}{n}) - n} = \text{e}^{\lim\limits_{n \to \infty} n^2 (\frac{1}{n} - \frac{1}{2n^2} + o(\frac{1}{n^2})) - n} = \text{e}^{-\frac{1}{2}} \]

  4. \(\alpha > 0\),求 \[ \lim_{n \to \infty} \Bigl(\cos \frac{1}{n^\alpha}\Bigr)^n \]

    变形: \[ \text{e}^{\lim\limits_{n \to \infty} n \ln (1 - \frac{1}{2! \cdot n^{2\alpha}} + o(\frac{1}{n^{3 \alpha}}))} = \text{e}^{\lim\limits_{n \to \infty} n \cdot(- \frac{1}{2! \cdot n^{2\alpha}} + o(\frac{1}{n^{3 \alpha}}) + o(- \frac{1}{2! \cdot n^{2\alpha}} + o(\frac{1}{n^{3 \alpha}})))} \]

    可以分析: \[ \lim_{n \to \infty} \Bigl(\cos \frac{1}{n^\alpha}\Bigr)^n = \begin{cases} 0, &\alpha < \frac{1}{2} \\ \text{e}^{-\frac{1}{2}}, &\alpha = \frac{1}{2} \\ 1, &\alpha > \frac{1}{2} \end{cases} \]

  5. 求极限 \[ \lim_{n \to \infty} \sqrt[n]{\ln n} \]

    \(\ln n\) 放缩,\(1 - \frac{1}{n} < \ln n < n - 1\),而 \(\lim\limits_{n \to \infty} \sqrt[n]{1 - \frac{1}{n}} = \lim\limits_{n \to \infty} \sqrt[n]{n - 1} = 1\),再由夹逼定理,得到问题极限结果也为 1

  6. \[ x_n = \frac{1}{2} \cdot \frac{3}{4} \cdot \cdots \cdot \frac{2n - 1}{2n} \]

    \[ \lim_{n \to \infty} x_n \]

    \[ \frac{2n - 1}{2n} = 1 - \frac{1}{2n} > \frac{2n - 2}{2n - 1} = 1 - \frac{1}{2n - 1} \]

    因为 \(1 > \frac{2n - 1}{2n} > 0\),所以

    \[ 0 \leq \prod_{k = 1}^{n} \frac{2k - 1}{2k} \leq \prod_{k = 1}^{n} \sqrt{\frac{2k - 1}{2k + 1}} = \sqrt{\frac{1}{2n + 1}} \]

    所以极限为 0.

  7. 设数列 \(\{a_n\}\) 有界,对于任何 \(n\) 总有 \(a_n \leq a_{n + 2}\)\(a_n \leq a_{n + 3}\) 成立,证明 \(\lim\limits_{n \to \infty} a_n\) 存在。

    此时有,\(a_{2n} \leq a_{2n + 2}\)\(a_{2n - 1} \leq a_{2n + 1}\)\(a_{3n} \leq a_{3n + 3}\)\((n = 1, 2, \cdots)\),这表明子数列 \(\{a_{2n}\}\)\(\{a_{2n - 1}\}\)\(\{a_{3n}\}\) 都是单调有界的,故都存在极限,分别设为 \(a\)\(b\)\(c\)。由于数列 \(\{a_{2n}\}\)\(\{a_{3n}\}\) 有公共数列 \(\{a_{6n}\}\),所以 \(a = c\);又由于数列 \(\{a_{2n - 1}\}\)\(\{a_{3n}\}\) 有公共数列 \(\{a_{6n -3}\}\),所以 \(b = c\),从而 \(a = b\),所以 \(\lim\limits_{n \to \infty} a_n\) 存在。

  8. 如果存在正整数 \(p\),使得 \[ \lim_{n \to \infty} (a_{n + p} - a_n) = \lambda \]

    则, \[ \lim_{n \to \infty} \frac{a_n}{n} = \frac{\lambda}{p} \]

    将数列 \(\{\frac{a_n}{n}\}\),划分为如下互不相交的子数列,\(\{\frac{a_{1 + (n - 1)p}}{1 + (n - 1)p}\}\)\(\{\frac{a_{2 + (n - 1)p}}{2 + (n - 1)p}\}\)\(\cdots\)\(\{\frac{a_{p + (n - 1)p}}{p + (n - 1)p}\}\)\(n \geq 1\),记为 \(\{\frac{a_{i + (n - 1)p}}{i + (n - 1)p}\}\)\(1 \leq i \leq p\),只需要证明对于所有的 \(i\),都有 \[ \lim_{n \to \infty} \frac{a_{i + (n - 1)p}}{i + (n - 1)p} = \frac{\lambda}{p} \]

    由 stolz 定理,得 \(\lim\limits_{n \to \infty} \frac{a_{i + (n - 1)p}}{i + (n - 1)p} = \frac{\lim\limits_{n \to \infty} a_{i + (n - 1)p} - a_{i + (n - 2)p}}{p} = \frac{\lambda}{p}\)。综上,题目推论成立

  9. \(x_0 = a\)\(x_1 = b\)\(x_{n + 1} = \frac{1}{2} (x_n + x_{n - 1})(n = 1, 2, \cdots)\)。证明数列 \(\{x_n\}\) 有极限,并求 \(\lim\limits_{n \to \infty} x_n\)

    不妨设 \(b > a\),由题目可得:

    \[ \begin{align*} x_1 &> x_0 \\ x_1 &> x_2 > x_0 \\ x_1 &> x_3 > x_2 \\ x_1 &> x_3 > x_4 > x_2 > x_0 \\ x_1 &> x_3 > x_5 > x_4 > x_2 > x_0 \\ x_1 &> x_3 > x_5 > x_6 > x_4 > x_2 > x_0 \\ \cdots \end{align*} \]

    有数学归纳法容易证明,数列 \(\{x_{2n - 1}\}\) 单调递减,数列 \(\{x_{2n}\}\) 单调递增,同时有界,所以这两个数列均有极限。

    \[ \begin{aligned} x_{2n + 1} &= \frac{1}{2} (x_{2n} + x_{2n - 1}) \\ x_{2n} &= \frac{1}{2} (x_{2n - 1} + x_{2n - 2}) \\ x_{2n + 1} - x_{2n} &= \frac{1}{2} (x_{2n} - x_{2n - 2}) \end{aligned} \]

    因为极限存在,所以

    \[ \lim_{n \to \infty} (x_{2n + 1} - x_{2n}) = \lim_{n \to \infty} \frac{1}{2} (x_{2n} - x_{2n - 2}) = 0 \]

    所以奇数项和偶数项的极限相等,故改数列极限存在,同时 \(x_{n + 1} + \frac{1}{2} x_n = x_1 + \frac{1}{2} x_0\),解得极限为 \(\frac{2}{3}(b + \frac{a}{2})\)

  10. 设数列:\(x_0 = a\)\(x_1 = 1 + b x_0\)\(\cdots\)\(x_{n + 1} = 1 + b x_n\)\(\cdots\),求 \(a\)\(b\) 使得该数列收敛。

    由题目可得: \[ \begin{align*} x_{n} &= 1 + b x_{n - 1} \\ x_{n - 1} &= 1 + b x_{n - 2} \\ &\cdots \\ x_1 &= 1 + b x_0 \end{align*} \]

    从而推出 \(x_n = 1 + b + b^2 + \cdots + b^{n - 1} + b^n \cdot a = \frac{b^n - 1}{b - 1} + b^n \cdot a = \frac{-1}{b - 1} + b^n (\frac{1}{b - 1} + a)\),分析得:当 \(|b| < 1\) 时,收敛;当 \(b \leq -1\)\(b > 1\) 时,\(a = \frac{1}{1 - b}\) 时,收敛。

  11. \(x_0 = a\)\(x_1 = b\)\(x_{n + 1} = \frac{x_{n - 1} + (2n - 1) x_n}{2n}(n = 1, 2, \cdots)\),求 \(\lim\limits_{n \to \infty} x_n\)

    \[ x_{n + 1} - x_{n} = -\frac{x_{n} - x_{n - 1}}{2n} = (-1)^2\frac{x_{n - 1} - x_{n - 2}}{2n \cdot 2(n - 1)} = \cdots = \frac{(-1)^{n - 1} (x_2 - x_1)}{2n \cdot 2(n - 1) \cdots 2} \\ = \bigg(\frac{-1}{2}\bigg)^{n} \frac{1}{n!} (b - a) = a + (b - a)\text{e}^{-\frac{1}{2}} \]

    所以

    \[ \begin{aligned} x_{n + 1} &= a + (b - a) \sum_{k = 0}^{n} \bigg(\frac{-1}{2}\bigg)^{k} \frac{1}{k!} \\ \lim_{n \to \infty} x_{n + 1} &= a + (b - a) \sum_{k = 0}^{\infty} \bigg(\frac{-1}{2}\bigg)^{k} \frac{1}{k!} \end{aligned} \]

  12. 设数列由递推公式 \(u_1 = b\)\(u_{n + 1} = u_n^2 + (1 - 2a) u_n + a^2 (n = 1, 2, \cdots)\) 所确定。当 \(a\)\(b\) 为何值时,数列 \(\{u_n\}\) 收敛?它的极限等于什么?

    \[ \begin{aligned} u_{n + 1} - u_{n} &= (u_n - a)^2 \\ u_{n} - u_{n - 1} &= (u_{n - 1} - a)^2 \\ \cdots \\ u_2 - u_1 &= (u_1 - a)^2 \end{aligned} \]

    所以,\(u_{n + 1} = b + \sum\limits_{k = 1}^{n} (u_{k} - a)^2\),所以需要级数 \(\sum\limits_{k = 1}^{n} (u_{k} - a)^2\) 收敛,必要条件是 \(\lim\limits_{n \to \infty} u_n = a\)。同时,因为数列 \(\{u_n\}\) 单调递增,\(\lim\limits_{n \to \infty} u_{n + 1} = \lim\limits_{n \to \infty} u_n^2 + (1 - 2a) u_n + a^2 = a\),应有 \(a - 1 \leq u_n \leq a\),故 \(a - 1 \leq b \leq a\)

  13. 设数列 \(\{x_n\}\) 定义如下:\(x_1 = \sqrt{5}\)\(x_{n + 1} = x_n^2 - 2(n = 1, 2, \cdots)\)。求极限 \(\lim\limits_{n \to \infty} \frac{x_1 x_2 \cdots x_n}{x_{n + 1}}\)

    \[ x_{n + 1}^2 - 4 = x_n^2 (x_n^2 - 4) = x_n^2 x_{n - 1}^2 \cdots x_2^2 x_1^2 \]

    所以,

    \[ \lim\limits_{n \to \infty} \frac{x_1 x_2 \cdots x_{n}}{x_{n + 1}} = \lim\limits_{n \to \infty} \sqrt{\big(\frac{x_1 x_2 \cdots x_{n}}{x_{n + 1}}\big)^2} = \lim\limits_{n \to \infty} \sqrt{\frac{x_{n + 1}^2 - 4}{x_{n + 1}^2}} = 1 \]

  14. \(x_1 \in (0, 1)\)\(x_{n + 1} = x_n (1 - x_n)\),证明 \(\lim\limits_{n \to \infty} n x_n = 1\)

    因为 \(x_1 \in (0, 1)\),且 \(x_i(1 - x_i) = x_{i + 1} \leq 0.25\),容易证明数列 \(\{x_n\}\) 单调递减且有界。

    易证 \(\lim\limits_{n \to \infty} x_n = 0\),证明 \(\lim\limits_{n \to \infty} n x_n = 1\) 等价于证明 \(\lim\limits_{n \to \infty} \frac{1}{n x_n} = 1\)。由 stolz 定理得:

    \[ \lim_{n \to \infty} \frac{1}{n x_n} = \lim_{n \to \infty} \bigg(\frac{1}{x_n} - \frac{1}{x_{n - 1}} \bigg)= \lim_{n \to \infty} \frac{x_{n - 1} - x_n}{x_n x_{n - 1}} = \lim_{n \to \infty} \frac{x_{n - 1}^2}{x_{n - 1}^2 (1 - x_{n - 1})} = 1 \]

  15. \(x_1 = \sin x_0 > 0\)\(x_{n + 1} = \sin x_n(n = 1, 2, \cdots)\),证明 \(\lim\limits_{n \to \infty} x_n \sqrt{\frac{n}{3}} = 1\)

    \(1 > x_1 = \sin x_0 > x_1 = x_2 > \cdots\) > 0,故数列 \(\{x_n\}\) 单调递减且有下界,故极限存在。

    易证 \(\lim\limits_{n \to \infty} x_n = 0\),证明 \(\lim\limits_{n \to \infty} x_n \sqrt{\frac{n}{3}} = 1\) 等价于证明 \(\lim\limits_{n \to \infty} \frac{1}{n x_n^2} = \frac{1}{3}\),由 stolz 定理和洛必达法则得: \[ \lim_{n \to \infty} \frac{1}{n x_n^2} = \lim_{n \to \infty} \frac{1}{x_n^2} - \frac{1}{x_{n - 1}^2} = \lim_{n \to \infty} \frac{x_{n - 1}^2 - x_{n}^2}{x_n^2 x_{n - 1}^2} = \lim_{x \to 0^+} \frac{x^2 - \sin^2 x}{x^4} = \frac{1}{3} \]

  16. \(x_n = (1 + \frac{1}{n + 1})^{n + 1} -(1 + \frac{1}{n})^n (n = 1, 2, 3, \cdots)\)。证明 \(\{x_n\}\)\(\{\frac{1}{n^2}\}\) 是同阶无穷小。

    只需要证明 \(\lim\limits_{n \to \infty} \frac{x_n}{\frac{1}{n^2}}\) 存在

    \[ \begin{aligned} x_n n^2 &= \bigg(1 + \frac{1}{\xi}\bigg)^{\xi}\bigg[\ln (1 + \frac{1}{\xi}) - \frac{1}{1 + \xi}\bigg] n^2, n < \xi < n + 1 \\ \lim_{n \to \infty} x_n n^2 &= \lim_{n \to \infty} n^2\bigg(1 + \frac{1}{\xi}\bigg)^{\xi}\bigg[\ln (1 + \frac{1}{\xi}) - \frac{1}{1 + \xi}\bigg] \\ \lim_{n \to \infty} x_n n^2 &= \text{e} n^2 \lim_{n \to \infty} \bigg(\frac{1}{\xi} - \frac{1}{2\xi^2} + o\bigg(\frac{1}{\xi^2}\bigg) - \frac{1}{1 + \xi} \bigg) = \frac{\text{e}}{2} \end{aligned} \]

  17. 求极限 \[ \lim_{n \to \infty} \frac{\sqrt[n]{n} - 1}{\frac{1}{n^{\alpha}}}(0 < \alpha < 1) \]

    由等价无穷小,原极限为: \[ \lim_{n \to \infty} \frac{\sqrt[n]{n} - 1}{\frac{1}{n^{\alpha}}} = \lim_{n \to \infty} \frac{\text{e}^{\frac{\ln n}{n}} - 1}{\frac{1}{n^{\alpha}}} = \lim_{n \to \infty} \frac{\frac{\ln n}{n}}{\frac{1}{n^{\alpha}}} = \lim_{n \to \infty} \frac{\ln n}{ n^{1 - \alpha}} = 0 \]

  18. \(x_1 = \sqrt{2}\)\(x_{n + 1} = \sqrt{2 + x_n}(n = 1, 2, \cdots)\),证明 \(x_n - 2 = o(\frac{1}{3^n})(n \to \infty)\)

    显然数列单调递增,极限为 \(A = 2\)

    \[ x_{n + 1} - A = \sqrt{2 + x_n} - \sqrt{2 + A} = \frac{x_n - A}{\sqrt{2 + x_n} \sqrt{2 + A}} \leq \frac{x_n - A}{4} \leq \cdots \leq \frac{\sqrt{2} - 2}{4^{n}} = o\bigg(\frac{1}{3^n}\bigg) \]

  19. \(f(x) = \frac{2 + x}{1 + x}\)\(x_0 = 1\)\(x_{n + 1} = f(x_n)(n = 0, 1, 2, \cdots)\),求 \(\lim\limits_{n \to \infty} x_n\),并尽可能估计数列趋于极限得速度。

    \(x_{n + 1} = \frac{2 + x_n}{1 + x_n}\),当 \(n \geq 1\) 时,数列 \(\{x_n\}\) 单调递减且有下界,故有极限 \(A\)

    \[ |x_{n + 1} - A| = \bigg|\frac{1}{1 + x_n} - \frac{1}{1 + A}\bigg| = \bigg|\frac{x_n - A}{(1 + x_n)(1 + A)}\bigg| \leq \bigg|\frac{x_n - A}{(1 + \sqrt{2})^2}\bigg| \leq \cdots \leq \frac{|x_1 - A|}{(1 + \sqrt{2})^{2n}} \]

  20. \(x_1\)\(x_2\)\(x_3\)\(\cdots\)\(x_n\)\(\cdots\) 是将方程 \(\tan x = x\) 的全部正根按由小到大的次序编号而成的,求极限 \(\lim\limits_{n \to \infty} (x_{n} - x_{n - 1})\)

    由几何关系记 \(y_n = \arctan x_n\)\(x_n = y_n + n\pi\),所以 \(\lim\limits_{n \to \infty} (y_n - y_{n - 1} + \pi) = \pi\)

  21. \(a > 0\)\(f_n(x) = x^n + nx - a(n = 1, 2, \cdots)\)\(x_n\)\(f_n(x)\)\((0, +\infty)\) 上的唯一零点,求 \(\lim\limits_{n \to \infty} (1 + x_n)^n\)

    \(n > a\) 时,\(f_n(\frac{a}{n} - \frac{a}{n^2}) = (\frac{a}{n} - \frac{a}{n^2})^n - \frac{a}{n} < 0\),所以 \(\frac{a}{n} - \frac{a}{n^2} < x_n < \frac{a}{n}\),由夹逼定理得极限为 \(\text{e}^a\)

  22. \(x_1 = a\)\(y_1 = b(0 < a < b)\)\(x_{n + 1} = \sqrt{x_n y_n}\)\(y_{n + 1} = \frac{x_n + y_n}{2}\)。证明:数列 \(\{x_n\}\)\(\{y_n\}\) 的极限都存在且相同。

    由均值不等式得到 \(y_{n + 1} = \frac{x_n + y_n}{2} \geq \sqrt{x_n y_n} = x_{n + 1}\),若存在等号成立的 \(x_n\)\(y_n\),记为 \(a\),则有 \(x_{n + 1} = x_n = y_{n + 1} = y_{n} = a\),此时显然存在极限且相同。若不存在等号成立的 \(x_n\)\(y_n\),此时严格有 \(y_{n} > x_{n}\),从而可以推出,\(x_{n + 1} = \sqrt{x_n y_n} > x_{n}\)\(y_{n + 1} = \frac{x_n + y_n}{2} < y_n\),且 \(x_n < y_n < y_1 = b\)\(y_n > x_n > x_1 = a\),所以数列 \(\{x_n\}\) 严格单调递增且有界,数列 \(\{y_n\}\) 严格单调递减且有界,故数列 \(\{x_n\}\)\(\{y_n\}\) 的极限都存在,分别设极限为 \(x_0\)\(y_0\),由 \(\lim\limits_{n \to \infty} y_{n + 1} = \lim\limits_{n \to \infty} \frac{x_n + y_n}{2}\)\(x_0 = y_0\),所以极限相等。

  23. 求极限 \[ \lim_{x \to 0^{+}} \frac{x^x - (\sin)^x}{x^3} \]

    原极限为: \[ \lim_{x \to 0^{+}} \frac{x^x - (\sin)^x}{x^3} = \lim_{x \to 0^{+}} \frac{\text{e}^{x \ln x} - \text{e}^{x \ln \sin x}}{x^3} = \lim_{x \to 0^{+}} \frac{\text{e}^{\xi}(x \ln x - x \ln \sin x)}{x^3} = \frac{1}{6} \]

  24. 求极限 \[ \lim_{x \to + \infty} \bigg(\frac{x^{1 + x}}{(1 + x)^{x}} - \text{e}^{-1} x\bigg) \]

    原极限为: \[ \lim_{x \to + \infty} \bigg(\frac{x^{1 + x}}{(1 + x)^{x}} - \text{e}^{-1} x\bigg) = \lim_{x \to + \infty} x \cdot \bigg(\frac{1}{(1 + \frac{1}{x})^x} - \frac{1}{\text{e}}\bigg) = \lim_{t \to 0^{+}} \frac{\text{e} - (1 + t)^{\frac{1}{t}}}{t(1 + t)^{\frac{1}{t}} \text{e}}= \\ = \frac{1}{\text{e}} \lim_{t \to 0^{+}} \frac{1 - \text{e}^{\frac{1}{t} \ln (1 + t) - 1}}{t} = \frac{1}{2\text{e}} \]

  25. \(f(x)\) 在区间 \([0, 1]\) 上连续,\(f(0) = 0\)\(f(1) = 1\)。证明:\(F(x) = f(x)(1 - f(x)) - x(1 - x)\)\([0, 1]\) 上至少有 \(3\) 个不同的零点。

    \(x = 0\)\(x = 1\) 是两个零点,故只需要证明在区间 \((0, 1)\) 上至少有一个零点。\(F(x) = f(x) - f^2(x) - x + x^2 = (f(x) - x) -(f(x) - x)(f(x) + x) = (f(x) - x)(1 - f(x) - x)\),令 \(g(x) = 1 - f(x) - x\),有 \(g(0) = 1\)\(g(1) = -1\),由零点定理得,至少存在一点 \(c\),使得 \(g(c) = 0\),所以至少有 \(3\) 个零点。

  26. \(f(x)\) 在闭区间 \([0, 1]\) 上连续,\(f(0) = f(1)\)。证明:对于任何自然数 \(n\),总存在 \(\xi_n \in (0, 1)\) 使得 \(f(\xi_n) = f(\frac{1}{n} + \xi_n)\)

    \(F(x) = f(x) - f(\frac{1}{n} + x)\),只需要证明 \(F(x)\) 在区间 \([0, 1 - \frac{1}{n}]\) 上有零点。假设不存在零点,此时不妨设恒有 \(F(x) > 0\),因此有 $F(0) + F() + + F() > 0 $,也就是 \(f(0) - f(\frac{1}{n}) + f(\frac{1}{n}) - f(\frac{2}{n}) - \cdots - f(1) = f(0) - f(1) > 0\),显然出现矛盾,因为 \(f(0) - f(1) = 0\),因此必然有零点。

  27. \(f(x)\)\(g(x)\) 在闭区间 \([a, b]\) 上连续,并有数列 \(\{x_0\} \subset [a, b]\),使得 \(f(x_{n + 1}) = g(x_n) (n = 1, 2, \cdots)\)。证明:存在一点 \(x_0\),使得 \(f(x_0) = g(x_0)\)

    \(F(x) = f(x) - g(x)\),假设 \(F(x)\) 在区间 \([a, b]\) 不存在零点,其在区间内的最小值为 \(m\),不妨设恒有 \(F(x) > 0\),$f(x_{n + 1}) = g(x_n) = g(x_n) - f(x_n) + g(x_{n - 1}) = [g(x_n) - f(x_n)] + [g(x_{n - 1}) - f(x_{n - 1})] + + [g(x_2) - f(x_2)] + g(x_1) $\(= -F(x_n) - F(x_{n - 1}) - \cdots - F(x_2) + g(x_1) \leq (1 - n)m + g(x_1)\),显然 \(\lim\limits_{n \to \infty} f(x_n) = -\infty\)\(f(x)\) 有界条件矛盾,所以必然存在一点 \(x_0\),使得 \(f(x_0) = g(x_0)\)

  28. 设函数 \(f(x)\) 在闭区间 \([a, b]\) 上连续,其值域 \(f([a, b]) \subseteq [a, b]\)。证明:该函数存在不动点,即存在 \(x_0 \in [a, b]\) 使得 \(f(x_0) = x_0\)

    设函数 \(F(x) = f(x)- x\),由题知:\(a \leq f(x) \leq b\),所以有 \(F(a) = f(a) - a \geq 0\)\(F(b) = f(b) - b \leq 0\),有零点定理得:至少存在一点 \(x_0\) 使得 \(f(x_0) = x_0\)

  29. 设函数 \(f(x)\) 在区间 \((0, 1)\) 内有定义,且 \(\text{e}^{x} f(x)\)\(\text{e}^{-f(x)}\) 在区间 \((0, 1)\) 内都是单调递加的函数,证明:\(f(x)\)\((0, 1)\) 内连续。

    根据 \(\text{e}^{-f(x)}\) 的单调性,可知,函数 \(f(x)\)\((0, 1)\) 上单调递减。任取 \(x_0 \in (0, 1)\),当 \(x \in (x_0, 1)\),有 \(\text{e}^{x_0 - x} f(x_0) \leq f(x) < f(x_0)\),由夹逼定理得到 \(\lim\limits_{x \to x_0^+} f(x) = f(x_0)\);当 \(x \in (0, x_0)\),同理可得 \(f(x_0) < f(x) < \text{e}^{x_0 - x} f(x)\),由夹逼定理得 \(\lim\limits_{x \to x_0^{-}} f(x) = f(x_0)\),综上,\(\lim\limits_{x \to x_0} f(x) =f(x_0)\),得连续性。

  30. \(f(x)\) 在区间 \((0, +\infty)\) 上有定义,在 \(x = 1\) 处连续且 \(f(1) = 3\)。如果对任意正数 \(x\) 都有 \(f(x^2) = f(x)\) 成立,求 \(f(x)\) 的表达式。

    \(f(x) = f(\sqrt{x}) = f(\sqrt[4]{x}) = \cdots = f(\sqrt[2^n]{x})\),由于在 \(x = 1\) 处连续,\(\lim\limits_{n \to \infty} f(\sqrt[2^n]{x}) = f(1) = 3\),所以有 \(f(x) \equiv 3\)

  31. 设函数 \(f(x)\)\((-\infty, +\infty)\) 上有定义,在 \(x = 0\) 处连续且 \(f(0) = 2\)。证明:恒等式 \(f(2x) = f(x) \text{e}^x\) 成立的充要条件是 \(f(x) = 2 \text{e}^{x}\)

    充分性显然,下面证明必要性。\(f(x) = f(\frac{x}{2}) \text{e}^{\frac{x}{2}} = f(\frac{x}{4}) \text{e}^{\frac{x}{4}} \text{e}^{\frac{x}{2}} = \cdots = f(\frac{x}{2^n}) \text{e}^{x(\frac{\frac{1}{2} - \frac{1}{2^{n + 1}}}{1 - \frac{1}{2}})}\),由于 \(f(x)\)\(x = 0\) 处连续,所以 \(\lim\limits_{n \to \infty} f(x) = f(0) \text{e}^{x} = 2 \text{e}^{x}\),所以 \(f(x) = 2 \text{e}^{x}\)。综上,得证充分必要性。

  32. \(f(x)\)\((-\infty. +\infty)\) 上有定义,在点 \(x = 0\) 处连续且 \(f(1) = 2\)。又对于任何 \(x\)\(y\) 满足函数方程 \(f(x + y) = f(x) + f(y)\) 成立。求 \(f(x)\) 的表达式。

    先证明,\(f(x)\)\((-\infty. +\infty)\) 上连续,\(f(0) = 0\) 且在点 \(x = 0\) 处连续,所以 \(\lim\limits_{x \to 0} f(x) = 0\),对任意 \(x_0 \in (-\infty, +\infty)\)\(\lim\limits_{\Delta x \to 0} f(x + \Delta x) = f(x) + \lim\limits_{\Delta x \to 0} f(\Delta x) = f(x)\),故证明连续性。对于任意正整数 \(n\),有 \(f(1) = f(\frac{1}{n}) + f(\frac{1}{n}) + \cdots + f(\frac{1}{n}) = n f(\frac{1}{n})\),也就是 \(f(1) \frac{1}{n} = f(\frac{1}{n})\);同理,对于任意正有理数 \(\frac{m}{n}\),有 \(f(\frac{m}{n}) = m f(\frac{1}{n}) = 2 \frac{m}{n}\),也就是 \(f(x) = 2x\)。对任意负有理数 \(x\)\(-x\) 是正有理数,所以 \(f(0) = f(x) + f(-x)\),得到 \(f(-x) = 2 \cdot -x\),同样说明了 \(f(x) = 2x\)。对于任何无理数 \(x\),存在有理数列 \(r_n\)\(\lim\limits_{n \to \infty} r_n = x\),由函数及其连续性知 \(f(x) = \lim\limits_{n \to \infty} f(r_n) = \lim\limits_{n \to \infty} 2r_n = 2x\)。综上,\(f(x) = 2x\)

  33. 设有一非负连续函数,对于所有的实数 \(x\)\(y\) 满足函数方程 \(f(\sqrt{x^2 + y^2}) = f(x)f(y)\)\(f(1) = 2\),证明:\(f(x) = 2^{x^{2}}\)

    容易得到 \(f(x) = f(-x)\)。对任意正整数 \(n\),有 \(f(\sqrt{n + 1} x) = f(\sqrt{n}x)f(x) = [f(x)]^{n + 1}\)。设正整数 \(p\)\(q\),得 \(f(|p|) = f(\sqrt{q^2}|\frac{p}{q}|) = [f(|\frac{p}{q}|)]^{q^2} = 2^{p^2}\)

  34. 求极限 \[ \lim_{x \to 0^-} -\frac{1}{x^2} \text{e}^{\frac{1}{x}} \]

    \[ \lim_{x \to 0^-} -\frac{1}{x^2} \text{e}^{\frac{1}{x}} = \lim_{t \to +\infty} - \frac{t^2}{\text{e}^t} = 0 \]

  35. 给定三个实数 \(a_1\)\(b_1\)\(c_1\)。将每个数换为另外两个数的算术平均值,即 \(a_2 = \frac{b_1 + c_1}{2}\)\(b_2 = \frac{a_1 + c_1}{2}\)\(c_2 = \frac{a_1 + b_1}{2}\),如此下去构造的三个数列 \(\{a_n\}\)\(\{b_n\}\)\(\{c_n\}\)。证明三个数列的极限都为 \(\frac{S}{3}\),其中 \(S = a_1 + b_1 + c_1\)

    \(a_n = \frac{b_{n - 1} + c_{n - 1}}{2}\)\(b_n = \frac{a_{n - 1} + c_{n - 1}}{2}\),所以 \(a_n - b_n = \frac{b_{n - 1} - a_{n - 1}}{2} = \frac{a_{n - 2} - b_{n - 2}}{2^2} = \cdots = (-1)^{n - 1} \frac{b_1 - a_1}{2^{n - 1}}\),即 \(\lim\limits_{n \to \infty} a_n - b_n = 0\),同理可得 \(a_n = b_n = c_n\),同时 \(a_n + b_n + c_n = a_{n - 1} + b_{n - 1} + c_{n - 1} = \cdots = a_1 + b_1 + c_1 = S\)。综上,三个数列的极限结果都是 \(\frac{S}{3}\)

  36. \(\lim\limits_{n \to \infty} x_n = a\)\(\lim\limits_{n \to \infty} y_n = b\),证明:数列

    \[ z_n = \frac{x_1 y_n + x_2 y_{n - 1} + \cdots + x_n y_1}{n} \]

    收敛于 \(ab\)

    \(x_n = a + \alpha_n\)\(y_n = b + \beta_n\),其中 \(\alpha_n\)\(\beta_n \to 0\)\(n \to \infty\),于是

    \[ \begin{aligned} z_n &= \frac{1}{n} \sum_{k = 1}^{n} (a + \alpha_n)(b + \beta_{n - k}) \\ &= \frac{1}{n} \biggl(\sum_{k = 1}^{n} ab + \sum_{k = 1}^{n} a\beta_{n - k} + \sum_{k = 1}^{n} \alpha_kb + \sum_{k = 1}^{n} \alpha_k \beta_{n - k}\biggr) \\ &= ab \end{aligned} \]

  37. \(a > 0\),参数方程:\(x = \frac{3at}{1 + t^3}\)\(y = \frac{3at^2}{1 + t^3}\) 表示的曲线称为笛卡儿叶形线。

    (1). 求出该曲线在直角坐标系下的方程;

    (2). 仅就直角坐标系下的方程求出该曲线的渐近线;

    (3). 仅就参数方程求出该曲线的渐近线。

    (1). 直角坐标系下的方程为

    \[ x^3 + y^3 = 3axy \]

    (2). 对曲线的直角坐标系下的方程变形得到:

    \[ \frac{x^3}{y} + y^2 = 3ax \]

    如果存在垂直渐近线,也就是存在 \(c \in R\)\(\lim\limits_{x \to c} y = \pm \infty\),则会推出变形后的方程左端的值为 \(\infty\),右端为 \(3ac\),产生矛盾,故不存在垂直渐近线。同理不存在水平渐近线。

    设曲线有斜渐近线 \(y = kx + b\),则 \(\lim\limits_{x \to \pm \infty}\frac{y}{x} = k\)\(\lim\limits_{x \to \pm \infty} (y - kx) = b\),再次变形原直角坐标系方程

    \[ \biggl(\frac{y}{x}\biggr)^2 + \frac{x}{y} = \frac{3a}{x} \]

    解得 \(k = -1\),从而

    \[ b = \lim_{x \to \pm \infty} (y + x) = \lim_{x \to \pm \infty} \frac{x^3 + y^3}{x^2 - xy + y^2} = \lim_{x \to \pm \infty} \frac{3axy}{x^2 - xy + y^2} = -a \]

    所以,渐近线方程为 \(x + y + a = 0\)

    (3).

    \[ \lim_{x \to \infty} \frac{y}{x} = \lim_{t \to -1} \frac{\frac{3at^2}{1 + t^3}}{\frac{3at}{1 + t^3}} = -1 \]

    \[ \lim_{x \to \infty} (y + x) = \lim_{t \to -1}\biggl(\frac{3at^2}{1 + t^3} + \frac{3at}{1 + t^3} \biggr) = -a \]

  38. 求极坐标方程的曲线 \(\Gamma: \rho = \frac{1}{3\theta - \pi}\) 在直角坐标系下的渐近线方程。

    直角坐标系下,该曲线的参数方程为

    \[ \begin{cases} x &= \rho \cos \theta \\ y &= \rho \sin \theta \end{cases} \]

    由于 \(\cos x\)\(\sin x\) 都是有界函数,易见不存在垂直渐近线和水平渐近线,下面求其斜渐近线。

    \[ \begin{aligned} \lim_{x \to \pm \infty} \frac{y}{x} &= \lim_{\theta \to \frac{\pi}{3}} \tan \theta = \sqrt{3} \\ \lim_{x \to \pm \infty} (y - kx) &= \lim_{\theta \to \frac{\pi}{3}} \rho(\sin \theta - \sqrt{3} \cos \theta) = \frac{2}{3} \end{aligned} \]

  39. \(F(x) = \bigl(\frac{a_1^x + a_2^x + \cdots + a_n^x}{n}\bigr)^{\frac{1}{x}}\)\(a_i^x\) 都是正数,,求下列极限;

    (1). \(\lim\limits_{x \to +\infty} F(x)\)

    (2). \(\lim\limits_{x \to -\infty} F(x)\)

    (3). \(\lim\limits_{x \to 0} F(x)\)

    \(\max \{a_1, a_2, \cdots, a_n\} = a_x\)\(\min \{a_1, a_2, \cdots, a_n\} = a_y\)

    (1).

    \[ \frac{a_x}{n^{\frac{1}{x}}} \leq F(x) \leq a_x \]

    \(\lim\limits_{x \to +\infty} F(x) = a_x\)

    (2). 因为 \(x < 0\),所以有

    \[ \frac{a_y}{n^{\frac{1}{x}}} \leq F(x) \leq a_y \]

    \(\lim\limits_{x \to -\infty} F(x) = a_y\)

    (3). 由洛必达法则得到

    \[ F(x) = \text{e}^{\frac{1}{x} [\ln (a_1^x + a_2^x + \cdots + a_n^x) - \ln n]} = \sqrt[n]{a_1 a_2 \cdots a_n} \]

  40. 已知

    \[ \lim_{x \to 0} \frac{\ln (1 + \frac{f(x)}{\sin 2x})}{3^x - 1} = 5 \]

    \(\lim\limits_{x \to 0} \frac{f(x)}{x^2}\)

    利用等价无穷小可得:

    \[ \lim_{x \to 0} \frac{\ln (1 + \frac{f(x)}{\sin 2x})}{3^x - 1} = \lim_{x \to 0} \frac{f(x)}{2x \cdot \ln 3 \cdot x} = 5 \]

    所以,\(\lim\limits_{x \to 0} \frac{f(x)}{x^2} = 10 \ln 3\)

  41. 设在 \((-\infty, +\infty)\) 上,\(f(x) \geq 0\),且对于任何 \(x_1\)\(x_2\) 总有 \(\frac{1}{2} f(x_1) + \frac{1}{2} f(x_2) \leq f(\frac{x_1 + x_2}{2})\) 成立。证明:\(f(x)\) 恒为常数。


函数、极限、连续
https://ddccffq.github.io/2025/07/12/数学竞赛/函数、极限、连续/
作者
ddccffq
发布于
2025年7月12日
许可协议