支持向量机

Linear SVM in Linearly Separable Case

Define Training Data

Define Separating Hyperplane

Define Classification Decision Function

Define Functional Margin

Define Geometric Margin

$\lVert w \rVert$ is $L_2$ norm

What’s More

Maximize Margin
Originally, we solve the following question.

We can transform this into a convex quadratic programming problem.

Support Vector

Margin

Learning Algorithm

  • input: $T$
  • output: Separating Hyperplane and $f(x)$

  • Solve and get the optimal solution $\alpha^*$.

  • Calculate.

Linear SVM

Learning Algorithm

  • input: $T$
  • output: Separating Hyperplane and $f(x)$

  • Solve and get the optimal solution $\alpha^*$.

  • Calculate.

Hinge Loss Functional

Non-linear SVM

Kernel Trick

Figure 1: Example for kernel trick

Positive Definite Kernel Function

$K :\mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a symmetric function, $K(x, z)$ is positive definite kernel function $\Leftrightarrow$ $\forall x_i \in \mathcal{X}, \quad i = 1, 2, 3, \dots, m, \quad \text{the gram matrix corresponding ot } K(x, z) \text{is positive semi-definite.}$

Gram Matrix

Learning Algorithm

  • input: $T$
  • output: Separating Hyperplane and $f(x)$

  • Solve and get the optimal solution $\alpha^*$.

  • Calculate.

SMO Algorithm

Algorithm concept

SMO algorithm is a kind of heuristic algorithm.

Solution methods for quadratic programming with two variables

We choose $\alpha_1, \alpha_2$, fixing other variables $\alpha_i (i = 3, 4, \dots, N)$.
Now, we solve following question:

$K_{ij} = K(x_i, x_j),i,j = 1,2, \dots, N$, $\zeta$ is a constant, the constant term in $(2)$ is omitted.

We consider best optimal question about $\alpha_2$.

if $ y_1 \neq y_2 $.

else.

Now, we update $\alpha_2$.

Next, update $\alpha_1$.

Solution methods for selecting variables

  1. select the highest $E_i$ in all nodes as $\alpha_1$.
  2. select the highest $|E_1 - E_2|$as $\alpha_2$.

Solution methods for calculating threshold b and E

What’s more

updating $E$.

$\mathcal{S}$ includes all SV $x_i$.


支持向量机
http://example.com/2025/05/30/支持向量机/
作者
ddccffq
发布于
2025年5月30日
许可协议